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Abstract	
(for	dissemination)	

This	deliverable	reports	on	the	work	and	achievements	of	the	VALIDATE	
project	towards	transitioning	an	AI	prognostic	model	from	TRL	3	to	TRL	4,	
and	the	development	of		a	guideline	on	model	development,	validation	and	
lifecycle	management	of	AI	models	for	clinical	decision	support	which	will	be	
set	out	in	Validate	Deliverable	2.5.	The	report	provides:	(a)	a	review	of	
relevant	background	literature,	including	technology	readiness	levels,	best	
practice	in	machine	for	healthcare,	and	medical	device	regulations;	(b)		
a	review	of	the	state-of-the-art	in	federated	learning;	(c)	a	report	on	the	data	
understanding	and	data	preparation	work	carried	out	on	multiple	datasets	
(the	German	Stroke	Registry	and	MRCLEAN	datasets);	(d)	the	development	
of	multiple	models	to	predict	the	modified	Rankin	Scale	(mRS)	of	a	patient	90	
days	after	stroke	onset,	using	two	complementary	machine	learning	
approaches,	neural	networks	and	tree-based	ensemble	models;	and	(e)	the	
in-lab	validation	of	the	models	on	retrospective	multicenter	data.		

Keywords	 Technology	Readiness	Levels,	Medical	Device	Regulation,	CRIPS-ML(Q),	
Machine	Learning,	stroke,	modified	Rankin	Scale	
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Introduction	
Figure	1	below	(taken	from	the	Validate	proposal)	provides	an	overview	of	the	project	methodology,	
and	the	work	reported	 in	this	deliverable	relates	to	the	very	center	of	this	figure	where	an	agile	AI	
model	development	is	used	to	transition	an	AI	model	from	TRL	3	to	TRL	4.			

	

Figure	1	Validate	Overview	

In	the	VALIDATE	proposal	the	complete	agile	AI	model	refinement	project	is	described	as	[b]eginning	
with	a	pre-existing	AI	model	validated	on	retrospective	data	from	a	single-site	 (TRL3)	the	VALIDATE	
processing	iteratively	matures	the	AI	through	to	a	clinically	validated	(TRL6)	demonstrator	that	is	ready	
for	 regulatory	 validation,	 that	 has	 a	 clearly	 defined	 pathway	 to	market.	 However,	 this	 deliverable	
focuses	on	reporting	on	the	first	iteration	of	this	process,	the	transition	of	an	AI	model	from	technology	
readiness	 levels	 3	 (TRL3)	 to	 a	 technology	 validated	 at	 TRL4.	 This	 work	 directly	 contributes	 to	 the	
following	objectives	of	the	Validate	project:		

• Objective	2	Transition	an	existing	AI	prognostic	model	from	TRL	3	through	to	validation	at	TRL6	
• Objective	7	Establish	SOPs	for	the	integration	of	AI	 in	healthcare.	Specifically,	regarding	the	

development	of	a	guideline	on	model	development,	validation	and	lifecycle	management	of	AI	
models	for	clinical	decision	support	which	will	be	set	out	in	Validate	Deliverable	2.5.	

The	 overall	 ambition	 of	 the	 VALIDATE	 project	 is	 that	 the	 methodology	 developed	 for	 AI	 model	
refinement	and	integration	into	healthcare	would	integrate	current	state-of-the-art	machine	learning	
(ML)	development	cycles,	such	as	CRISP-ML(Q)	[1],	with	a	trustworthy	AI	framework	that	grounds	the	
EU	Trustworthy	AI	guidelines	[2]	in	the	specific	needs	of	AI	for	healthcare.	It	was	originally	envisaged	
that	this	integration	could	be	achieved	by	using	a	technology	readiness	level	(TRL)	framework	to	track	
the	maturity	level	of	the	AI	and	to	tailor	the	ML	development,	evaluation	and	validation	methods	and	
the	trustworthy	AI	framework	to	the	considerations	relevant	to	the	current	TRL.	It	is	hoped	that	the	
resulting	 VALIDATE	 methodology	 would	 establish	 SOPs	 for	 AI	 validation	 that	 would	 achieve	 the	
following:		

o Bring	AI	models	from	research	to	practice	
o Meet	the	necessary	criteria	of	clinical	practice	
o Operationalize	“release”	and	consecutive,	multi-tier	validation	of	models	
o Define	the	necessary	requirements	and	infuse	co-creation	with	ethical	guidelines	and	

stakeholder	requirements	
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The	AI	model	that	is	being	used	as	the	case	study	for	developing	and	road-testing	this	AI	refinement	
process	is	an	AI	model	built	to	predict	the	outcome	of	stroke	patients	at	90	days	after	the	onset	of	
stroke	 symptoms.	 Although	 the	 classification	 of	 specific	 instances	 of	 AI	 technology	 within	 the	
frameworks	established	by	EU	Medical	Device	Regulation	(MDR)	and	the	In-vitro	Diagnostic	Regulation	
is	 still	 under-determined,	 AI	 algorithms	 are	 generally	 regarded	 as	 Class	 II	 (medium	 risk)	 [3]	 .	
Consequently,	MDR	regulations	are	relevant	to	AI	technology	and	should	be	factored	into	the	design	
of	the	VALIDATE	methodology.	As	a	result,	in	this	deliverable,	we	include	a	discussion	on	MDR	and	how	
it	 relates	 to	AI	 validation.	An	 important	aspect	of	MDR	 regulation	 is	 the	definition	of	 the	 intended	
purpose	of	the	tool,	as	this	is	crucial	for	the	assessment	of	the	risk	level	associated	with	the	tool.	As	we	
will	discuss	this	concept	provides	a	point	of	synergy	with	the	trustworthy	AI	framework	in	terms	of	
opening	up	a	discussion	in	relation	to	ethical	approaches	such	as	ethics	by	design	and	defensive	design.	
It	is	noteworthy	that	as	part	of	Task	2.1,	the	data	science	teams	working	on	the	development	of	the	
models	have	engaged	in	these	discussions	with	both	the	researchers	in	WP1	who	are	developing	the	
VALIDATE	Trustworthy	AI	framework	and	the	external	ethics	auditors	from	the	Z-inspection	process	
that	 the	 VALIDATE	 project	 is	 engaging.	 However,	 these	 developments	 will	 be	 captured	 in	 the	
deliverables	reported	through	WP1	and	so	won’t	be	discussed	in	this	document.		

Overall,	the	work	carried	out	in	Iteration	1	included:	

• a	review	of	relevant	background	literature,	including	technology	readiness	levels,	best-practice	
in	machine	learning	for	healthcare,	and	medical	device	regulations	

• a	review	and	testing	of	current	state-of-the-art	federated	learning	frameworks		
• an	 extensive	 data	 understanding	 and	 data	 preparation	 phase	 for	 multiple	 datasets	 (the	

German	Stroke	Registry	and	MRCLEAN	datasets),	involving	both	the	tasks	related	to	the	legal	
and	ethical	requirements	necessary	to	prepare	for	data	access,	as	well	as	work	on	identifying	
coming	features	and	implementing	feature	mappings	across	the	datasets,	and	data	cleaning.	

• the	development	of	two	complementary	machine	learning	approaches,	neural	networks,	and	
tree-based	ensemble	models.	

• the	 in-lab	validation	of	 the	models	on	retrospective	multicenter	data.	Models	were	trained	
and	 validated	 on	 individual	 datasets	 using	 cross-validation	 and	 then	 validated	 again	 on	 a	
different	dataset	 to	assess	each	model's	 robustness	when	transferred	 to	new	distributions.	
The	assessment	of	the	models	across	different	datasets	not	only	has	the	benefit	of	assessing	
the	models	 themselves	but	also	provides	 insight	 into	 the	quality	 and	 similarity	of	different	
datasets,	which	can	be	important	in	a	federated	learning	setting	[4].	

In	summary,	the	work	reported	in	this	deliverable	is	fundamental	work	that	will	enable	the	next	steps	
of	implementing	ML	models	in	federated	learning	(FL)	systems,	and	ultimately	to	the	development	of	
SOPs	 for	 the	 integration	 of	 AI	 in	 healthcare	 that	 are	 relevant	 to	 the	 state-of-the-art	methods	 and	
practices	in	AI	model	development	and	EU	regulatory	and	ethical	principles.	
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Report	 on	 T2.2:	 VALIDATE	 clinical	 model	 refinement	 and	
validation	framework	
There	 is	 a	 growing	 awareness	 and	 acceptance	 of	 the	 need	 for	 guidance	 frameworks	 for	 the	
development	of	data-driven	AI	predictive	models,	be	they	diagnostic	or	prognostic.	Examples	of	recent	
scoping	reviews	and	publications	on	this	topic	include	[5]–[7].	Of	these	proposals,	the	scoping	review	
by	de	Hond	et	al.	[5]	is	the	most	directly	relevant	to	this	work	as	the	review	was	deliberately	done	in	a	
manner	that	generalized	across	medical	domains.	De	Hond	et	al.	organised	their	scoping	review	using	
a	 six-phase	AI	model	 development	 structure,	 namely:	 (1) data preparation, (2) AI-based Prediction 
Model (AIPM) development, (3) AIPM validation, (4) software development, (5) AIPM impact 
assessment, and (6) AIPM implementation into daily healthcare practice. We take de Hond et al.’s 
guidance framework as a useful basis for developing our own framework while noting a number of 
important differences between our approach and that set out by de Hond et al. First, de Hond et al.’s 
framework does not consider the iterative development of systems, as a project lifecycle it is most 
naturally understood as a waterfall approach. Consequently, it does not take the iterative nature of agile 
model development into account, nor the appropriateness of recommendations within each phase with 
respect to different levels of TRLs. Of the six phases set out the first 3 of de Hond et al.’s phases are 
most relevant for work at earlier TRL levels, and these are the phases we have focused on in this report. 

Key recommendations for the data preparation phase include clearly specifying the medical problem 
and context that the model with address and the context that the AIPM will address, to describe and 
define clinical success criteria, to consider trade-offs between predictive performance and privacy, and 
the identification and inclusion of stakeholders in the different phases of model development. Within the 
VALIDATE project these recommendations are primarily addressed through the work done in work 
package 1 Trustworthy AI, and work package 3 Software Development, Testing and Integration. See 
for example D1.1 and D3.2 - Integrated requirements report covering technical and user requirements. 
This works feeds into the work in WP2 most directly through task T2.1 Definition of requirements and 
review adherence to trustworthy AI framework and the engagement by researchers from across the data 
science teams in WP3 in the external ethical auditing (Z-inspection) process that VALIDATE is using.  

de Hond et al.’s recommendations on clearly specifying the medical problem and context that the model 
with address and the context that the AIPM will address aligns with the requirements within medical 
device regulations for the determination of a clear intended purpose, and so here we borrow from T2.1 
to define the intended purpose we have agreed upon for VALIDATE: 

The medical intended purpose of the VALIDATE software is to provide a tool to enable 
a prediction about the individual treatment outcome in the treatment of acute ischemic 
stroke. This is based on the patient's individual initial health status and is geared 
towards the best treatment outcome applying the Modified Rankin Scale (MRS). It 
supports the diagnosis as well as the initiation of the appropriate therapy. 

VALIDATE D3.2 Integrated	requirements	report	covering	technical	and	user	requirements	(p.	32) 

A key distinction set out by de Hond et al. between phases 2 and 3 of their framework is the difference 
between internal validation and external evaluation of model performance. Phase 2 of their framework 
AI-based Prediction Model development calls for internal validation of the model where the goal of 
internal validation is to assess the predictive performance of an AIPM in data that are unseen with 
respect to model training but come from the same population and setting [5, p. 5]. By contrast in Phase 
3 they recommend external performance evaluation which involves the application of an existing model 
without modifications to data from a different population or setting compared to model development [5, 
p. 6]. Adopting this distinction in our experiment work below we report experiments covering internal 
validation and external validation, using the German Stroke Registry data to develop models and internal 
validation, and the MRCLEAN dataset for external evaluation. 

Overall, we have identified four different areas of regulation and practice that are relevant to the 
development of a framework for the development of AI systems for health (see Figure	2). These include 
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technology readiness levels, medical device regulation, trustworthy and ethical AI, technology readiness 
levels, and best-practice in agile AI model development. The trustworthy AI perspective will be covered 
in more detail in the deliverables from WP1, so in what follows we will focus on technology readiness 
levels, medical device regulation and machine learning practice and how (we currently understand) each 
of these topics as framing or contributing to the TRL3 too TRL4 iteration of AI model development.  

	

Figure	 2	Relevant	Perspectives	 and	Regulations	 for	 the	development	of	AI-based	Clinical	Decision	 Support	
Systems	

Technology	Readiness	Levels	for	AI-based	Clinical	Decision	Support	
systems	
Technology	 Readiness	 Levels	 (TRLs)	 have	 been	 used	 across	 industries	 to	 assess	 the	 maturity,	 the	
progress	 of	 development	 and	 with	 that	 the	 risk	 of	 the	 technology.	 TRL	 frameworks	 are	 generally	
defined	 in	 terms	 of	 broad,	 high-level	 concepts	 that	 allow	 for	 adaptation	 to	 specific	 fields	 of	
development	and	understanding	for	both	developers	and	managers.	However,	although	these	general	
specifications	allow	for	adaptation	to	specific	contexts	this	does	not	mean	that	it	is	not	challenging	to	
satisfactorily	define	these	mappings	of	TRLS	for	novel	development	processes.	For	example,	Medical	
Device	Development	(MDD)	naturally	differs	from	the	original	application	industries	of	TRLs	(such	as	
space	 technologies)	 in	 many	 ways,	 e.g.	 due	 to	 the	 diverse	 regulatory	 pathways	 across	 countries.	
Specific	adaptation	to	MDD	and	a	new	mapping	have	been	proposed	recently,	which	provides	better	
categorization	 and	 facilitates	more	precise	 risk	 assessment	 for	 the	 various	 stages	of	MDD.	 Table	1	
shows	a	selected	overview	of	references	found	in	the	literature,	representing	a	narrowing	focus	from	
the	original	outline	by	 the	US	Department	of	Defence	 (DoD)	 to	a	 recently	proposed	 translation	 for	
MDD.		

Table	1	Definitions	of	TRLs	1-4	from	a	selection	of	the	literature	

	 TRL1	 TRL2	 TRL3	 TRL4	

	 MDLR1	 MDLR2	

[8]	

Basic	principles	
observed	and	
reported	

Technology	
concept	and/or	
application	
formulated.	

Analytical	and	
experimental	critical	
function	and/or	
characteristic	proof	of	
concept.	

Component	and/or	
breadboard	validation	in	
laboratory	environment			

[9]	
Basic	principles	
observed	

Technology	
concept	
formulated	

Experimental	proof	of	
concept	

Technology	validated	in	lab	

[10]	 Scientific	
literature	reviews	

Hypothesis(es)	is	
generated.		

Initial	proof-of-concept	
for	device	candidates	is	

Proof-of-concept	and	safety	of	
candidate	devices/systems	
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and	initial	Market	
Surveys	are	
initiated	and	
assessed.		
Potential	
scientific	
application	to	
defined	problems	
is	articulated.	

Research	plans	
and/or	protocols	
are	developed,	
peer	reviewed,	
and	approved.	

demonstrated	in	a	
limited	number	of	
laboratory	models.	

demonstrated	in	defined	
laboratory/animal	models.	

[11]	

Basic	principles	
and	research	
data	observed	
and	reported.	
Scientific	
research	findings	
reviewed	and	
assessed	and	
translation	into	
applied	research	
begun.	Potential	
targets,	
mechanisms,	
concepts	
evaluation.	

Technology	
concept	and/or	
application	
formulated.	
Research	ideas,	
hypothesis,	
experimental	
designs,	potential	
targets,	
technologies,	
solutions	(also	
digital),	protocols	
identified	and	
developed,	peer	
reviewed	and	
approved.	

Active	R&D,	data	
collection	and	analysis	
initiated.	First	
hypothesis	testing,	
target	identification,	
potential	candidates	
characterization,	data	
collection,	technological	
components	(also	
digital)	evaluation,	
alternative	concepts	
exploration	carried	out.	
Early	proof	of	concept	
(PoC)/system	
application	tested	in	
laboratory	
environment,	in	a	
limited	number	of	in	
vitro	&	in	vivo	models.	

Preclinical	R&D.	PoC,	safety	of	
potential	candidates,	device	
or	system	demonstrated	in	a	
relevant	laboratory	or	animal	
model	(non-GxP).	Formulation	
and	manufacturing	process	
development	initiated	(non-
GMP).	Identification	of	
relevant	parametric	data	
required	for	technological	
assessment.	System	
components	integrated	and	
tested	regarding	preliminary	
efficiency	and	reliability.	
Software	architecture	and	
other	system	components	
development	to	address	
reliability,	scalability,	
operability,	security	etc.	Other	
system	components	
development.	

[12]	

Needs	
Assessment.	
Identification	of	
scientific	and	
design	principles	
to	address	an	
existing	medical	
challenge	in	
terms	of	safety,	
clinical	
effectiveness,	
systems	
integration,	
human	
performance,	
and	satisfaction.	

Prototype	
Development.	
Development	of	a	
working	
prototype	
illustrating	
scientific	and	
design	principles	
to	address	safety	
and	effectiveness.	
Potential	user	
performance	and	
system	
integration	issues	
are	identified	to	
improve	the	
design.	

Bench	Testing.	Bench	
testing	to	identify	
mechanical,	electrical,	
and	biological	
engineering	
performance	issues	of	
the	device,	including	ex	
vivo,	in	vitro,	and	in	situ	
animal	or	human	tissue;	
and	animal	carcass	or	
human	cadaveric	
testing.	

Animal	Testing.	Initial	
evidence	of	MD	safety	is	
established,	including	its	
performance	when	used	in	a	
living	system.	Device	operator	
performance	issues	identified	
to	enhance	the	design.	

	

In	principle,	TRLs	can	also	be	interpreted	as	a	clustering	of	requirements	specific	to	consecutive	stages	
of	the	development	process.	Reaching	a	higher	level	of	maturity	means	a	new	milestone	and	fulfilment	
of	another	set	of	various	requirements	towards	the	technology.	Following	this	line,	we	are	working	on	
defining	a	mapping	of	TRLs	to	the	development	life-cycle	of	AI-based	Clinical	Decision	Support	Systems	
(CDSS).	To	do	this	we	are	building	on	existing	literature	and	engaging	in	multidisciplinary	co-creation	
with	internal	and	external	industry	experts	to	define	all	key	requirements	towards	CDSS	from	relevant	
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sources;	 namely	 stakeholder	 pain	 points,	 ethical/trustworthy	 considerations	 and	 Medical	 Device	
Regulation	(MDR).	We	follow	the	process	of		

1. identifying	an	exhaustive	list	of	mechanisms,	best	practices,	tests	and	requirements	along	the	
AI	life	cycle,		

2. clustering	these	into	our	adapted	TRL	definition	in	a	way	that	each	level	resembles	important	
milestones	of	AI	maturity,		

3. iteratively	review	and	discuss	our	categorization	internally	and	externally.		

At	this	point	of	reporting,	we	mostly	focused	on	potential	requirements	up	to	TRL4.	It	is	important	to	
mention	that	we	are	following	a	multidisciplinary	approach	already	in	the	first	step	of	the	process	and	
integrated	requirements	from	stakeholder	interviews	and	research	(reported	on	in	D3.2	deliverable)	
as	well	as	–	at	this	point	-	preliminary	requirements	from	the	VALIDATE	ethical	framework	(reported	
on	 in	 D1.1	 deliverable).	 The	 iterative	 refinement	 and	 development	 of	 our	 TRL	 categorization	 will	
include	external	assessment	as	part	of	the	Z-inspection®	process	and	will	be	extended	to	further	levels	
of	maturity	up	to	TRL6.	Later	in	this	document	(see	Table	3)	we	set	out	our	current	thinking	of	how	
TRLs	map	to	different	stages	in	the	development	life-cycle	of	a	CDSS.		

AI	Validation	and	Medical	Device	Regulation	(MDR)	
One of the goals of the VALIDATE project is that the process developed for the creation of the 
VALIDATE demonstrator should align with Medical Device Regulations. Table	 2 lists the ISO 
standards we have identified as being most relevant to our work from a medical device regulation 
perspective. The most general of these is ISO 60601 Medical Device Equipment, however ISO 62304 
deals specifically with medical device software and it calls for both a risk management system and a 
quality management system. Certification in relation to risk management of medical devices can be 
obtained by following ISO 14971 and certification in relation quality management is obtained by 
following ISO 13485.  

Table	2	Relevant	ISO	Standards	for	Medical	Device	Regulation	and	AI	Risk	Management	

ISO Identifier Description 

60601 Medical Device Equipment 

62304 Medical Device Software 

13484 Medical Devices Quality Management Systems 

14971 Medical Devices Application of Risk Management to Medical Devices 

23894 Information Technology – Artificial Intelligence – Guidance on risk management 

Each of these ISO standards sets out processes for compliance, typically requiring the documentation of 
processes of the tracking of adherence to these processes. However, none of these ISO standards were 
designed with AI systems in mind. Indeed, new ISO standards are being developed a published 
specifically to deal with AI, see for example ‘ISO/IEC 23894:2023 Information technology — Artificial 
intelligence — Guidance on risk management’ publication date 2023-02. As a result, we are currently 
working on reviewing these ISO standards and their associated documentation in order to better 
understand how they should be applied within the context of AI model development, this work is 
ongoing.  

Mapping	to	the	CRISP-ML(Q)	process	
The	 potential	 of	 AI	 and	 applications	 of	 Machine	 Learning	 (ML)	 in	 many	 industries	 has	 been	
demonstrated	 in	 recent	 years,	 yet	 most	 of	 the	 models	 deployed	 and	 used	 in	 those	 solutions	 are	
products	of	a	different	development	process.	Standardized	development	processes	are	key	to	meet	
business	and	–	in	areas	such	as	healthcare	even	more	importantly	–	performance	expectations.	The	
CRoss-Industry	Standard	Process	model	for	the	development	of	Machine	Learning	applications	with	
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Quality	assurance	methodology	(CRISP-ML(Q))	[1]	was	proposed	to	provide	such	guidance	throughout	
the	 AI	 life	 cycle.	 The	 original	 framework	 splits	 the	 life	 cycle	 into	 six	 phases:	 Business	 &	 Data	
Understanding,	Data	Preparation,	Modelling,	Evaluation,	Deployment,	Monitoring	&	Maintenance.	For	
each	 of	 these	 phases	 state-of-the-art	 quality	 assurance	 methodologies	 are	 proposed	 to	 mitigate	
challenges.	

In	contrast	to	other	application	areas,	for	MDs	and	CDSSs	require	in	principle	a	more	rigorous,	multi-
phase	validation	as	discussed	previously.	Validation	in	various	clinical	environments	or	study	settings	
(i.e.	retrospective,	prospective)	mean	for	example	re-iterating	data	verification	and	quality	assessment	
cycles,	thus	call	for	a	slightly	adjusted	process.	To	this	end,	we	take	prescriptions	of	CRISP-ML(Q)	as	
the	basis	and	propose	an	adapted	framework	for	developing	AI-based	CDSS.	This	enables	clear	tracking	
of	 AI	 maturity	 in	 correspondence	 to	 our	 definition	 of	 TRLs	 for	 CDSS	 and	 provide	 straightforward	
guidance	 to	 translate	 the	 accumulated	 requirements	 into	 action	 and	 success	 while	 manages	 the	
correct	expectations	on	each	level	of	maturity.	

First,	 we	 decouple	 Business	 understanding	 and	 consider	 it	 as	 the	 necessary	 initial	 step	 to	 create	
business	objectives,	Key	Performance	Indicators	and	Value	Drivers.	All	these	are	then	translated	into	
key	requirements	for	the	system	to	be	achieved	at	given	TRLs.	Next,	we	envision	3	principal	phases	or	
in	other	words,	groups	of	processes,	that	will	follow	each	other	in	consecutive	iterations.	These	are	
Data	assessment,	Model	verification	and	Performance	assessment.	One	iteration	through	each	should	
bring	the	CDSS	one	level	higher	in	TRLs.	Consequently,	each	of	the	phases	covers	different	aspects	of	
the	umbrella	topic	in	different	iterations.	On	some	TRLs,	some	phases	might	not	prescribe	necessary	
processes	 and	might	 be	 skipped.	 For	 example,	 Performance	 assessment	 on	 TRL1.	 In	 fact,	 taking	 a	
resource-efficient	 approach,	we	argue	each	 iteration	 shall	 start	with	 a	Performance	assessment	 to	
determine	if	the	existing	solution	meets	the	criteria	of	a	higher	TRL.	This	also	enables	our	framework	
to	 be	 applicable	 for	 further	 development	 of	 existing	 solutions.	 In	 case	 the	 assessment	 fails,	 the	
iteration	starts	with	the	corresponding	Data	assessment	phase	of	the	targeted	TRL.	Phases	are	passed	
once	 the	 necessary	 requirements	 are	 achieved	 and	 the	 generated	 output	 for	 the	 next	 phase	 is	
prepared	and	approved.	In	case	phases	have	been	passed	on	a	given	TRL	but	the	CDSS	did	not	meet	
the	necessary	Performance	assessment	criteria,	the	unmet	requirements	should	be	closely	analysed	
and	revisited.	Figure	3	depicts	the	described	process.	

	

Figure	3	CRISP-ML	Process	

Let	us	revisit	the	challenge	of	multi-phase	validation	in	MDD.	The	above-proposed	framework	allows	
the	 definition	 of	 specific	 quality	 assurance	 criteria	 with	 respect	 to	 different	 validation	 settings	
corresponding	to	the	maturity	of	the	MD.	For	example,	in	vitro	validation	and	clinical	randomized	trial	
are	majorly	different	milestones	in	the	development	process	and	thus	would	prescribe	requirements	
in	the	Performance	assessment	phase	of	separate	TRLs.	Our	framework	aims	to	provide	a	standardized	
way	of	 tracking	progress	and	provides	a	clearer	understanding	 for	all	 stakeholders	where	 their	key	
points	are	included	in	the	process.	
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In	 the	 following,	 we	 present	 the	 resulting	 list	 of	 requirements	 with	 an	 initial	 implication	 of	
categorizations	of	the	levels	of	maturity	and	correspondence	to	the	above-mentioned	3	phases.	We	
note	however	that	this	has	not	been	reviewed	and	is	a	majorly	ongoing	process.		

Table	3	Listing	of	current	mappings	from	TRLs	to	requirements	

- The	clinical	need	and	challenge	should	be	understood	
- Identification	of	safety,	effectiveness	and	impact	potentials	should	

be	initiated	
- Relevant	stakeholder	and	user	groups	are	identified	
- Due	to	the	critical	application	area	of	healthcare,	we	suggest	

inclusion	of	relevant	stakeholders	in	co-creation	as	early	as	TRL1,	e.g.	
in	terms	of	review	and	early	validation	of	the	abovementioned	
characterisation	of	the	initial	idea	

Business	understanding	

- Feasibility	of	necessary	data	collection	for	modelling	should	be	
assessed	or	existing	sources	for	hypothesis	testing	and	prototyping	
should	be	researched	

Data	
assessment	

TRL1	

–	

Model	idea	

- The	feasibility,	acceptability	and	potential	integration	(i.e.	into	
current	clinical	workflow)	of	a	data-driven	solution	should	be	
assessed	by	literature	review	of	AI	applications	in	the	same	medical	
field	and	similar	data	domains	

Model	
verification	

	
Performance	
assessment	

- Necessary	data	collection	is	initiated,	or	existing	data	sources	are	
pooled	

Data	
assessment	

TRL2	

–	

Model	
hypothesis	

- Modelling	and	experimental	design	necessary	for	hypothesis	testing	
is	created	and	peer	reviewed,	including	candidate	models	fitting	to	
the	specific	data	domain	and	important	model	and	optimization	
parameters	to	be	tuned	

- Potential	integration	challenges	are	identified,	and	solutions	are	
researched	and	reviewed	

Model	
verification	

- Research	plans	are	outlined,	hypothesis	is	formulated	around	the	
targeted	clinical	need	with	safety	and	effectiveness	measures	
understood	and	approved	by	relevant	stakeholders	

Performance	
assessment	

- Modelling	data	source	is	prepared	and	pre-liminary	analysis	and	
understanding	of	the	data	is	performed	

- Distribution	analysis	of	available	predictors	as	well	as	outlined	
prediction	targets	is	performed	and	reviewed	by	clinical	experts	

- Relevant	study	cohort	is	identified	to	test	hypothesis	and	selection	is	
reviewed	and	approved	by	clinical	experts	

- Data	schema	for	model	building	is	developed	in	discussion	with	
clinical	experts	

Data	
assessment	

TRL3		

–	

Research	
models,	
prototype	

- Modelling	experiments	conducted	to	test	prediction	performance,	
including	hyper-parameter	tuning	and	best	candidate	model	is	
selected.	

Model	
verification	

- Hypothesis	tested,	first	prototype	built	
- Performance	is	demonstrated	on	retrospective	data	adhering	to	the	

described	cohort	from	at	least	one	source/clinical	center	which	was	
not	included	in	the	training	or	parameter	selection	process	

- Code	framework	and	machine	learning	pipeline	for	pre-processing	
data,	training	and	evaluating	models	encapsulated	in	a	
formalised/standardized	process	which	have	been	peer	reviewed	

- Unit	tests	for	important	functionalities	in	the	code	have	been	
created	

Performance	
assessment	



	

VALIDATE	-			D2.1	 Page	13	of	54	 30/04/2023	

	

- Data	from	multiple	sources	(e.g.	medical	diagnostic	scanners)/clinical	
centers/databases	is	prepared	and	each	source	meets	established	
criteria	on	TRL3	

Data	
assessment	

TRL4	

–
Analytically	
validated	
models	

- Model(s)	are	prepared	for	cases	of	missing	information,	analysis	has	
been	conducted	on	effects	of	missing	input	data	

- Robustness	has	been	demonstrated	with	statistical	testing	using	
confidence	intervals	

- Overfitting,	performance	difference	in	training,	validation	and	held-
out	test	sets	has	been	analyzed	and	overcome	when	identified	

- Model	calibration	has	been	analyzed	and	conducted	

Model	
verification	

- Performance	above	state-of-the-art	is	demonstrated	using	multi-
metrics	evaluation	

- Performance	is	evaluated	and	retained	with	negligible	loss	on	
retrospective	data	adhering	to	the	described	cohort	from	multiple	
sources	(e.g.	medical	diagnostic	scanners)/clinical	centers/databases	

- Performance	is	evaluated	and	retained	with	negligible	loss	on	
relevant	sub-groups	of	data	points	of	clinical	relevance,	
demographics	(age,	sex/gender,	ethnicity/race,	geographic	location),	
edge-cases,	random	point	selection	

- Potential	performance	improvement	with	data	augmentation	have	
been	analyzed	and	exploited	

- A	resulting	model	for	further	integration	can	be	selected	with	
demonstrated	stability	and	fixed	input	and	output	in	alignment	with	
the	intended	clinical	decision	support	

Performance	
assessment	
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Report	on	T2.3:	Federated/Distributed	Learning	in	health	
One	of	the	major	challenges	in	developing	a	data-driven	model	for	healthcare	is	the	tension	that	exists	
between	the	sensitivity	and	privacy	concerns	related	of	personal	health	data,	and	the	importance	of	
accessing	 large	and	 representative	datasets	model	 training	and	validation.	The	VALIDATE	project	 is	
addressing	 this	 challenge	 by	 using	 federated	 learning.	 Federated	 learning	 is	 a	 machine	 learning	
technique	 that	 enables	 a	decentralised	model	 training.	 In	brief,	 rather	 than	aggregating	data	 from	
multiple	sites	on	a	central	server	and	training	the	model	on	the	server,	the	data	stays	at	the	original	
sites	and	a	central	model	 is	distributed	to	these	sites,	 independently	trained	at	these	sites,	and	the	
training	updates	are	then	shared	back	to	the	central	server	to	generate	a	new	updated	version	of	the	
central	model.	A	major	benefit	of	this	process	is	that	the	data	does	not	need	to	move	outside	of	its	
originating	 institution.	 Federated	 learning	 does	 of	 course	 assume	 a	 commonality	 across	 the	 data	
schemas	for	the	data	set	used	at	the	different	sites,	and	so	the	use	of	federated	learning	does	involve	
data	harmonization	and	mapping	between	different	sites.	The	initial	approaches	to	federated	learning	
were	 designed	 to	 work	 with	 gradient-based	 training	 algorithms	 that	 are	 most	 suitable	 for	 neural	
network	models.	More	recently,	however,	there	has	been	a	growing	interest	in	the	development	of	
distributed	 learning	methods	 for	other	 types	of	models	 such	as	 tree-based	ensembles.	 This	 recent	
development	is	of	particular	interest	because	tree-based	ensembles	provide	a	useful	contrast	to	neural	
models	 in	 terms	 of	 their	 interpretability	 and	 there	 is	 some	 evidence	 that	 tree-based	 models	 can	
outperform	neural	models	on	structured	tabular	data	[13]–[15].	Consequently,	we	have	reviewed	and	
experimented	 with	 both	 federated	 learning	 methods	 for	 neural	 models	 and	 distributed	 learning	
frameworks	for	tree-based	ensembles.	

Federated	Learning	with	Neural	models	
The	 classical	 implementation	 of	 FL	 relies	 on	 a	 central	 orchestrating	 server	 and	 distributed	 clients,	
where	the	server’s	role	is	to	distribute	and	aggregate	and	the	clients'	role	is	to	train	on	their	local	data	
and	return	results.	The	server	sends	an	initialized	model	to	all	clients,	that	train	the	model	based	on	
their	local	data.	The	trained	local	models	–	or	necessary	updates	in	model	parameters	–	are	sent	back	
to	the	server,	which	aggregates	all	local	updates	into	one	global	model.	In	the	next	round,	the	newly	
updated	model	is	distributed,	and	all	the	steps	are	repeated	over	and	over	again.	A	visualization	of	the	
process	is	shown	in	Figure	4	

	

Figure	4	Visualisation	of	a	federated	learning	process,	figure	sourced	from	[16]	

Currently,	federated	averaging	is	the	foremost	technique	to	aggregate	local	models	to	create	and	a	
global	one.	This	means	each	client	performs	one	training	step	and	reports	new	model	parameters	to	
the	central	server.	Here,	these	parameters	are	averaged	based	on	the	ratio	of	the	local	sample	size	
and	 the	 total	 sample	 size	 [17].	 Recent	 work	 by	 [18]	 shows	 that	 Federated	 Averaging	 is	 not	 only	
successful	in	applications	but	also	based	on	theory.	
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Thanks	to	the	mathematical	formulation	of	Neural	Networks	(NN),	this	classical	FL	concept	became	
most	popular	with	 such	models.	Practically,	different,	 trained	NNs	only	differ	 in	 the	actual	 learned	
weights	(model	parameters)	while	their	architecture	can	remain	the	same.	For	example,	two	NNs	with	
the	 same	 number	 of	 hidden	 layers	 and	 neurons	 can	 perform	 completely	 different	 information	
processing	depending	on	 the	 learned	weights	of	 their	neurons.	 This	 allows	 for	 simple	exchange	or	
fusion	of	different	networks	with	the	same	capacity	(i.e.	architecture).	

Federated	Learning	with	Tree-based	models	
An	alternative	approach	for	federated	learning	(FL)	 is	to	train	a	tree-based	model	using	data	across	
different	sites.	Tree-based	models	are	a	well-known	machine	learning	technique	that	is	widely	applied	
in	 numerous	 domains	 of	 science	 [19],	 [20],	 business	 [21],	 and	 in	 medical	 applications	 [22],	 [23].	
Recently,	 FL	 has	 also	 been	 used	 to	 train	 tree-based	models	 [24]	 and	 has	 been	 applied	 in	medical	
applications	[25].		

As	mentioned	by	Ong	et	al.	[24],	the	use	of	tree-based	models	in	FL	has	four	main	advantages	which	
include:	

i) Providing	a	prediction	model	with	a	balance	of	complexity	and	interpretability,	thus	
allowing	a	robust	performance	with	a	simple	understanding	and	interpretation	in	the	
decision-making	process;	

ii) Handling	categorical	and	numerical	features	at	the	same	time;	
iii) Tree-based	machine	learning	algorithms	intrinsically	include	a	feature	selection	process	

that	attempts	to	identify	and	choose	the	optimal	input	features	for	the	modelling	across	
the	given	data	sites.	This	functionality	will	strongly	support	the	pre-processing	step	in	FL,	
cutting	down	significantly	on	additional	communication	costs	between	data	sites.	

iv) Providing	a	robust	model	performance	with	respect	to	handling	non-IID	(independent	
and	identically	distributed)	data,	especially	when	using	Gradient	Boosted	Decision	Tree	
ensembles	(e.g.,	XGBoost)	[26].		

The	development	of	a	tree-based	model	using	FL	encounters	two	main	challenges:	i)	How	to	fuse	the	
data	across	different	sites	within	tree-based	FL	model	development?	and	ii)	What	kind	of	information	
can	be	exchanged	between	data-sites	and	the	FL	server?		

To	 answer	 the	 first	 challenge	 question,	 we	 need	 to	 know	 if	 the	 proposed	method	 is	 a	 vertical	 or	
horizontal	FL	approach,	and	what	type	of	tree-based	model	is	begin	used	for	FL	implementation.	In	the	
literature,	most	tree-based	FL	models	are	horizontal	FL,	i.e.	all	the	data-site	share	the	same	set	of	input	
features,	and	very	 few	applications	 for	vertical	FL,	 i.e.	all	 the	data-sites	share	 the	same	set	of	data	
sample	identifiers	[24].	Besides,	the	type	of	tree-based	model	can	be	varied	from	Decision	tree	[27],	
to	 random	 forest	 [25]	 and	 Gradient	 Boosting	 Decision	 Tree	 (or	 XGBoost)	 [28].	 Mostly,	 Gradient	
Boosting	Decision	Tree	such	as	XGBoost	or	LightGBM	are	implemented	in	FL	systems	[24].		

When	FL	 is	used	to	train	neural	models	that	are	trained	using	an	error	gradient	 learning	signal	 it	 is	
relatively	straightforward	to	share	information	between	the	data	sites	and	the	central	server	because	
the	error	gradients	are	both	(a)	not	directly	interpretable	with	respect	to	reconstructing	the	data	that	
the	models	are	being	trained	on,	and	(b)	the	errors	gradients	from	multiple	sites	can	be	integrated	by	
functions	such	as	simply	averaging.	By	contrast,	in	most	tree-based	learning	algorithms	trees	are	fitted	
to	the	data	by	iteratively	growing	the	tree	by	adding	new	nodes	to	the	bottom	of	the	tree,	where	each	
node	encodes	a	decision	regarding	the	sorting	of	examples	that	have	reached	that	node	based	on	the	
value	of	a	feature	in	the	dataset.	Consequently,	sharing	a	node	update	involves	sending	interpretable	
information	 such	 as	 a	 threshold	 being	 applied	 to	 a	 given	 feature.	 The	 exchange	 of	 this	 type	 of	
interpretable	and	sensitive	information	may	introduce	a	data	security	risk	for	an	FL	system.	Several	
proposals	have	been	made	in	the	literature	to	circumvent	the	leakage	of	information	each	data	site	
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can	exchange	a	different	kind	of	information;	for	example,	information	with	introduced	noise,	gradient	
values	[29].	

Recently,	 Hauschild	 et	 al.	 [25]	 reported	 a	 study	 of	 random	 forest	 in	 FL	 for	 healthcare	 applied	 on	
different	 datasets	 for	 predicting	 liver	 disease,	 Hepatocellular	 carcinoma,	 breast	 cancer	 and	 lung	
tumors.		Another	recent	tree-based	FL	framework	was	proposed	by	Wassan	et	al.	[29]	for	a	Gradient	
Boosting	Decision	Tree	FL	for	a	healthcare	internet-of-things	model.	However,	beyond	these	examples,	
our	 search	 of	 the	 literature	 suggests	 that	 the	 application	 of	 FL	 to	 tree-based	models	 for	 medical	
applications	 is	 still	 very	 limited.	 Furthermore,	 studies	 have	 shown	 a	 potential	 advantage	 of	 the	
outperformance	of	tree-based	models	on	tabular	data	when	compared	to	deep	learning	approaches	
[30].	 Therefore,	 the	 introduction	 of	 tree-based	 FL	 into	 this	 project	 will	 help	 to	 explore	 additional	
advantages	of	this	approach	in	predicting	the	outcome	of	the	patient	with	stroke.	

Progress	on	VALIDATE	FL	framework	
As	 preparation	 for	multi-centre	 validation	 and	 potential	 fine-tuning	 of	 the	 developed	models,	 we	
started	setting	up	the	VALIDATE	Federated	Learning	framework.	We	conducted	a	thorough	literature	
search	of	applications	of	FL,	as	well	as	a	more	technical	search	on	specific	Federated	algorithms.	The	
results	 of	 these	 are	 shown	 in	 the	 section	 below	 entitled	 Report	 on	 T2.3:	 Federated/Distributed	
Learning	in	health,	and	also	in	Appendix	C	Literature	Review	on	Federated	Learning	Applications.	Next,	
the	development	team	decided	to	use	the	open-source	FLOWER	FL1	framework.	For	integration	the	
following	steps	have	been	done:	

1. The	FLOWER	framework	has	been	tested	in	a	single	location,	by	creating	simulated	clients.	The	
training	was	successful	and	achieved	comparable	performance	to	the	classical	global	training.	

2. During	a	series	of	internal	technical	workshops,	the	VALIDATE	development	team	decided	to	
create	a	test	setup	to	pinpoint	all	challenges	before	deploying	and	recreating	the	setup	at	the	
VALIDATE	clinical	sites.	For	this	HDB	(responsible	for	T2.3)	was	appointed	as	server	and	CUB	
and	TU	Dublin	as	testing	client	sites.	

3. Next,	the	same	scenario	and	setup	from	Step	1	were	tested	with	HDB	as	a	server	and	a	remote	
client	on	an	AWS	Virtual	Machine.	This	test	did	not	include	any	sensitive	data	and	was	merely	
done	to	test	the	possibility	of	communication	from	the	server	through	the	Internet.	The	test	
was	successful	and	thus	a	requirement	for	client	setup	could	be	derived	from	it.	

4. This	requirement	was	applied,	and	setup	was	initiated	at	CUB.	An	Ubuntu	Virtual	Machine	was	
allocated	 inside	a	DeMilitarized	Zone	 (DMZ)	network	of	CUB,	where	access	 to	 the	 internet	
through	specific	ports	can	be	granted,	however,	the	network	is	secured	and	controlled	to	keep	
security	measures	of	sensitive	data	intact.	

5. The	setup	has	been	successfully	tested	locally	at	CUB.	Firewall	exceptions	have	to	be	added	by	
the	 IT	department	 to	allow	 incoming/outgoing	 traffic	on	a	 specified	and	controlled	port.	A	
request	has	been	filed;	the	VALIDATE	team	is	waiting	for	an	answer.	

In	parallel	with	the	FL	setup,	the	development	team	started	to	set	up	remote	access	to	the	VALIDATE	
clinical	sites.	A	request	for	a	Linux-based	virtual	machine	in	the	DMZ	network	(with	access	to	the	local	
data)	has	been	filed	at	 the	Vall	d’Hebron	site	and	communication	with	the	Hadassah	site	has	been	
initiated,	the	team	is	waiting	for	an	answer	from	the	IT	department.	In	HDB,	the	setup	is	established	
and	can	be	used	for	FL.	

The	next	steps	include:	

- Adaptation	of	the	VALIDATE	code	base	for	FL	and	integration	of	the	FLOWER	framework.	
- Test	FL	setup	with	CUB	and	TU	Dublin,	as	well	as	finalize	technical	requirements	at	partner	

sides	so	that	setup	can	be	initiated	at	the	clinical	sites.	
																																																													

1	https://flower.dev/	
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- Troubleshoot	potential	challenges	and	problems,	before	setup	at	the	clinical	sites.	

All	 these	 step	 as	 well	 as	 a	 comprehensive	 report	 on	 FL	 experiments	 will	 be	 reported	 in	 the	 next	
deliverable	(D2.2)	due	in	project	month	24.		
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Report	on	T2.4:	stroke	outcome	prediction	
In	VALIDATE	we	demonstrate	the	use	of	the	researched	and	developed	guidelines	for	AI-based	Clinical	
Decision	Support	Systems	on	the	use	case	of	ischemic	stroke.	Acute	ischemic	stroke	affects	more	than	
1	million	people	within	the	EU	annually.	It	occurs	when	a	blood	clot	blocks	a	brain-supplying	vessel,	
impedes	the	supply	of	oxygen	to	the	brain	and	subsequently	results	in	damage	to	brain	cells	with	loss	
of	 function	such	as	speech	 impairment	or	paralysis.	Even	though	the	average	treatment	effect	and	
outcome	benefit	across	the	entire	population	of	patients	is	proven,	outcome	still	differs	significantly	
for	individual	patients,	where	some	patients	are	eligible	for	treatment	but	still	can	show	catastrophic	
outcomes.	To	this	end,	we	develop	multi-variable	prognostic	AI	models	to	answer	the	question	of:	how	
to	improve	stroke	treatment	outcome	on	an	individual	patient	level?	

Definition	of	prediction	paradigm	
In	 order	 to	 fulfil	 our	 intended	 purpose	 and	 support	 treatment	 decisions	 in	 stroke	 we	 define	 our	
prediction	paradigm	in	the	following	way.	Similarly	to	treatment	effectiveness	validation,	the	target	of	
our	 models	 will	 be	 the	 prediction	 of	 the	 functional	 outcome.	 This	 is	 classically	 measured	 by	 the	
modified	Rankin	Scale	(mRS)	at	3	months	after	the	stroke,	as	shown	in	Table	4.	In	previous	studies	and	
clinical	trials	association	of	certain	predictors	at	the	time	of	hospital	admission	(baseline)	to	the	mRS	
score	has	been	analysed	in	multiple	ways.	First,	clinical	experts	might	look	for	a	simplified	dichotomy	
of	 the	 outcome,	 representing	 favourable	 (mRS	 <=	 2)	 vs.	 unfavourable	 (mRS	 >	 3)	 outcome	 or	
trichotomy,	describing	favourable	(mRS	<=	2)	vs.	unfavourable	(3	<=	mRS	<	5)	vs.	Devastating	(mRS	>=	
5).	 Second,	 to	 show	 the	 effectiveness	 of	 treatments,	 the	 shift	 in	 mRS	 levels	 between	 study	 arms	
(treated	vs.	control)	has	usually	been	evaluated.	The	approach	resulting	in	systematically	lower	mRS	
levels	promotes	better	outcomes	in	general.	Within	our	demonstration,	we	aim	to	provide	users	the	
same	information	prior	to	treatment.	

Table	4	modified	Rankin	Scale	

mRS	0	 No	symptoms	 
mRS	1	 No	significant	disability.	Able	to	carry	out	all	usual	activities,	despite	some	symptoms.	 

mRS	2	 Slight	disability.	Able	to	look	after	own	affairs	without	assistance,	but	unable	to	carry	out	all	previous	
activities.	 

mRS	3	 Moderate	disability.	Requires	some	help,	but	able	to	walk	unassisted.	 

mRS	4	 Moderately	severe	disability.	Unable	to	attend	to	own	bodily	needs	without	assistance,	and	unable	to	
walk	unassisted.	 

mRS	5	 Severe	disability.	Requires	constant	nursing	care	and	attention,	bedridden,	incontinent.	 
mRS	6	 Dead.	 
	

In	terms	of	our	prediction	paradigm,	this	means	we	need	to	build	models	on	the	full	scale	of	the	mRS	
score,	to	be	able	to	show	potential	shifts	with	different	treatment	options.	However,	from	full-scale	
mRS	predictions,	one	can	also	derive	dichotomized	or	trichotomized	predictions	which	might	have	a	
lower	granularity	but	allows	for	quicker	assessment	of	the	clinical	case	in	an	acute	scenario.	From	the	
translated	dichotomized	and	trichotomized	predictions	one	can	calculate	the	respective	performance	
of	the	model	and	compare	it	with	baselines	published	in	clinical	literature	(e.g.	similar	AI	approaches	
or	 statistical	 approaches/studies	 showing	 an	 association	 of	 predictors	 to	 outcomes).	 Important	 to	
note,	that	when	developing	AI	models	to	support	certain	decisions,	input	variables	should	be	restricted	
to	those	available	up	to	the	point	of	a	certain	decision	in	the	clinical	workflow	to	ensure	usability	and	
feasibility	of	integration.		
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Retrospective	data	

German	Stroke	Registry	(GSR)	
The	 German	 Stroke	 Registry	 —	 Endovascular	 Treatment	 (GSR,	 ClinicalTrials.gov	 Identifier:	
NCT03356392),	 is	 an	 ongoing,	 academic,	 prospective,	 multicentre	 registry	 in	 Germany	 [31].	 This	
dataset	has	been	exploited	for	machine	learning	outcome	prediction,	also	within	the	consortium	[32].	
Due	to	its	extensive	sample	size,	it	provides	a	good	basis	for	initial	machine	learning	models,	as	it	allows	
for	learning	possibly	many	–	heterogeneous	–	variations	of	the	predictive	variables.	This	is	why	we	are	
basing	the	initial	VALIDATE	models	on	this	dataset.	Statistics	of	the	dataset	can	be	found	in	Appendix	
A	in	Table	6.	

MRCLEAN	
MR	 CLEAN	 was	 a	 pragmatic,	 phase	 3,	 multicentre	 clinical	 trial	 with	 randomized	 treatment-group	
assignments,	 open-label	 treatment,	 and	 blinded	 end-point	 evaluation.	 Intraarterial	 treatment	
(intraarterial	 thrombolysis,	 mechanical	 treatment,	 or	 both)	 plus	 usual	 care	 (which	 could	 include	
intravenous	 administration	 of	 alteplase)	 was	 compared	 with	 usual	 care	 alone	 (control	 group)	 in	
patients	 with	 acute	 ischemic	 stroke	 and	 a	 proximal	 intracranial	 arterial	 occlusion	 of	 the	 anterior	
circulation	that	was	confirmed	on	vessel	imaging.	The	study	publication	can	be	found	here	[33].	This	
study	dataset	has	been	a	central	point	of	attention	and	machine	learning	modelling	in	the	previous	
years,	which	have	also	 resulted	 in	 the	development	of	 the	MRPREDICTS	outcome	prediction	 tool2.	
Consortium	members	have	worked	on	this	data	previously	and	also	have	access	for	further	research,	
thus	we	 included	 it	 as	 one	 of	 our	 external	 test	 datasets.	 Statistics	 of	 the	 dataset	 can	 be	 found	 in	
Appendix	A	in	Table	7.	

Dataset	from	Heidelberg	University	Hospital	(HDB)	
In	a	previous	project,	some	consortium	members	have	collaborated	in	machine	learning	prediction	of	
stroke	outcome	on	data	from	the	Heidelberg	University	Hospital	 [34].	Thus,	this	–	slightly	smaller	–	
dataset	is	also	instantly	available	and	was	included	in	the	first	experiments	of	modelling.	We	would	
like	 to	 note,	 that	 Heidelberg	 University	 Hospital	 is	 one	 of	 the	 VALIDATE	 clinical	 sites,	 thus	 more	
extensive	retrospective	data	is	in	progress	to	be	made	available.	Statistics	of	the	dataset	can	be	found	
in	Appendix	A	in	Table	8.	

Data	schema	definition	
In	order	to	develop	and	validate	an	AI	model	across	multiple	centres	(or	datasets),	one	needs	to	create	
a	common,	shared	list	of	input/output	variables	that	are	available	at	each	location,	and	database.	This	
list	 is	 called	 a	 data	 schema,	 which	 includes	 the	 description	 of	 variables,	 the	 used	 metrics	 of	
representation	(e.g.,	blood	pressure	–	mmHg,	age	–	years)	and	the	definition	of	any	transformations	
applied	 to	 the	data	 (e.g.,	blood	pressure	 ->	 [low,	mid,	high]	 instead	of	mmHg).	All	 this	 information	
needs	 to	 be	 synchronized	 across	 databases	 (retrospective	 or	 prospective)	 so	 that	 during	 training,	
testing	or	deployment	models	are	provided	with	the	same	information	regardless	of	the	source.	

In	the	case	of	VALIDATE,	this	means	harmonisation	of	the	available	retrospective	datasets	for	our	base	
models,	retrospective	data	at	the	VALIDATE	clinical	sites	and	prospective	data	to	be	collected	in	the	
planned	clinical	study.	We	created	a	governing	task	force	for	data-related	decisions,	called	Data	board,	
including	representatives	from	each	VALIDATE	clinical	centre	as	well	as	VALIDATE	developers.	First,	we	
initiated	the	harmonization	process	by	 looking	at	similar	solutions	(e.g.,	MRPREDICTS3)	and	studies,	
																																																													

2	https://www.mrclean-trial.org/mr-predicts.html	
3	https://www.mrclean-trial.org/mr-predicts.html	
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employing	machine	learning	models	for	the	prediction	of	mRS	in	literature	and	previous	work	within	
the	consortium.	We	collected	an	initial	set	of	variables	that	have	been	used	for	this	purpose.	Next,	we	
organized	multiple	discussions	with	the	VALIDATE	Data	board	and	reviewed	the	list	for	completeness	
and	potential	extensions.	The	VALIDATE	clinical	experts	reviewed	the	list	from	two	main	perspectives:		

1. are	all	information	captured	routinely	used	and	necessary	for	decision-making	in	stroke,		
2. availability	in	their	retrospective	databases.	

As	a	result,	we	created	a	so-called	target	list	of	variables	from	the	VALIDATE	teams	perspective,	which	
got	 compared	 next	 with	 our	 retrospective	 databases	 available	 from	 previous	 research	 projects	
described	 above	 (MRCLEAN,	 GSR).	 We	 marked	 variables	 that	 the	 VALIDATE	 Data	 board	 deemed	
important	and	were	not	represented	in	the	retrospective	datasets.	We	will	look	into	certain	ways	to	
include	these	into	modelling	despite	unavailability	in	the	first	stages	of	model	training.	The	resulting	
Data	schema	is	shown	in	Appendix	A	below	(see	Table	5).	

We	note	that	data	harmonisation	is	ongoing,	and	the	overarching	process	is	not	finished	or	finalized	
at	the	current	time	of	reporting.	Results	from	modelling	experiments	will	be	also	considered	to	finalize	
the	 selection	 of	 variables	 since	 prediction	 performance	 and	 feasibility	 of	 handling	 the	 inclusion	 of	
variables	in	later	fine-tuning	stages	of	the	models	must	be	assessed	to	decide	on	a	final	strategy.	We	
will	report	on	the	continuation	of	this	process	in	the	next	deliverables.	

VALIDATE	modelling	framework	and	code	base	
An	important	aspect	of	machine	learning	data	analysis	is	reproducibility.	Even	more	importantly,	when	
purposing	 models	 for	 higher	 TRLs,	 experimental	 robustness	 and	 systematic	 comparison	 of	
performance	are	crucial.	To	this	end,	we	are	developing	the	VALIDATE	modelling	framework,	which	is	
a	maintained	code	base	comprehending	the	necessary	pipeline	for	training	and	evaluating	models	as	
well	 as	 implementations	 of	 all	 necessary	 functionalities	 for	 satisfying	 the	 defined	 requirements.	 In	
principle,	this	framework	should	give	a	clear	methodological	explanation	of	how	a	model	on	a	certain	
TRL	level	has	been	trained,	evaluated,	and	released.	For	robustness,	the	developed	code	has	a	high	
level	of	unit	 test	coverage,	which	ensures	 the	developed	 functionalities	do	not	produce	errors	and	
execute	 the	 purposed	 function.	 All	 unit	 tests	 are	 run	 automatically	 through	 Git	 Actions	 by	 every	
commit	and	a	report	is	created	about	passing	or	failing	the	tests.	The	framework	is	dockerizable	and	
will	 be	 distributed	 to	 every	 partner	 working	 on	model	 development	 (WP2),	 but	 of	 course,	 is	 also	
available	for	review	to	all	consortium	members	and	will	be	published	as	open	source	with	relevant	
project	publications.	The	current	development	is	concerned	with	integrating	the	Federated	Learning	
functionalities	using	the	FLOWER	framework.	This	framework	has	been	used	to	generate	the	results	of	
Experiment	1	below.	Extension	with	Tree-based	modelling	is	also	currently	ongoing	thus	we	have	not	
been	able	to	exploit	it	for	Experiment	2	yet.	
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Conclusion	
In	the	current	deliverable	we	have	reported	on	the	progress	of	the	on-going	work	and	specific	tasks	of	
Work	 Package	 2.	We	 did	 not	 identify	 any	 major	 impediment	 and	 all	 the	 outlined	 work	 seems	 to	
progress	well.	We	are	at	a	time	point	in	the	project	where	the	major	co-creation	activities	are	starting	
and	thus	a	significant	proportion	of	the	reported	work	so	far	has	been	focused	on	creating	the	proper	
pathway	 for	 this.	Many	of	 the	outcomes	 reported	here	 are	 either	 already	under	 review	or	will	 be	
reviewed	as	a	next	step	by	internal	and	external	expert	boards.	

In	particular,	WP2	is	actively	participating	in	the	2-3	weekly	review	and	planning	meetings	of	WP3	for	
a	 regular	exchange	on	progress	 in	model	and	software	development.	Together	with	WP3,	we	have	
planned	a	workshop	on	Medical	Device	Regulation	for	the	entire	consortium,	where	we	will	present	
the	 research	done	so	 far	 (also	 referenced	 in	 this	document)	and	we	will	determine	next	 steps	and	
stakeholders	necessary	to	be	involved.	

Moreover,	as	a	result	of	a	previous	deliverable	(D1.1),	we	are	in	the	phase	of	establishing	a	regular	
exchange	 and	 review	 of	 ethical	 requirements	 with	 WP1.	 Additionally,	 the	 currently	 on-going	 Z-
inspection	assessment	will	also	greatly	contribute	to	further	development	of	the	VALIDATE	modelling	
framework	and	guidelines	on	TRL	definition	for	AI-based	CDSS.	

On	a	more	practical	note,	we	are	expecting	answers	on	the	remote	access	and	server	setups	from	the	
clinical	 sites’	 IT	 departments.	 Once	 access	 is	 granted	 the	 experimentation	 about	 translation	 and	
evaluation	 of	 models	 on	 the	 VALIDATE	 clinical	 sites	 will	 begin.	 In	 parallel,	 we	 are	 ensuring	 the	
documentation	of	all	experiments	and	adherence	to	our	own	TRL	definitions.	We	expect	to	be	able	to	
report	a	consistent	experiment	history	corresponding	to	an	established	framework	of	TRL	transitions	
for	AI-based	CDSS	in	the	next	deliverable	from	WP2.		

As	 a	 final	 note,	we	 are	planning	 a	 few	publications	 from	 the	 currently	 presented	works	 to	 further	
increase	dissemination	of	the	impactful	work	in	VALIDATE.	
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Appendix	A	Data	

Harmonised	Data	schema	
Table	5	lists	a	comparison	of	the	availability	of	variables	considered	for	the	VALIDATE	data	schema.	
HDB	denotes	retrospective	data	from	University	Hospital	Heidelberg,	which	 is	one	of	the	VALIDATE	
clinical	centres.	Green	rows	mark	variables	considered	in	the	first	experiments	of	modelling	reported	
below.	“x”	in	the	cell	indicates	the	availability	of	the	given	variable.	MRPREDICTS	refers	to	an	existing	
online	tool	to	predict	mRS	using	clinical	variables4.	This	tool	provided	the	basis	to	our	harmonisation	
process,	due	to	the	same	purpose	and	the	fact	that	the	initial	dataset	for	the	development	of	the	tool	
was	the	same	MRCLEAN	dataset	also	available	for	the	consortium.	The	other	metrics	used	in	the	table	
are:	NIHSS:	National	Institutes	of	Health	Stroke	Scale	-	objectively	quantify	the	impairment	caused	by	
a	stroke	and	aid	planning	post-acute	care	disposition,	ASPECTS:	Alberta	Stroke	Program	Early	CT	score	
-	assess	early	ischemic	changes	on	non-contrast	CT	head	

Table	5	Current	VALIDATE	data	schema	

Group	 Variable	
MRCLEAN	 HDB	 German	Stroke	

Registry	
MRPREDICTS	

Demographic	 	 	 	 	 	

	 Age	 x	 x	 x	 x	

	 Biological	sex	 x	 x	 x	 	

Examination	 	 	 	 	 	

	 NIHSS	 x	 x	 x	 x	

	
Systolic	blood	
pressure	 x	 	 	 x	

	 Pre-stroke	mRS	 x	 x	 x	 x	

Medication	 	 	 	 	 	

	 Antiplatelet	 x	 	 x	 	

	
Oral	
anticoagulant	 	 	 x	 	

	 Heparin(oids)	 x	 	 	 	

	 Statins	 x	 	 	 	

Lab	parameters	 	 	 	 	 	

	
INR	(prothrombin	
time	test)	

	 	 	 	

	 Creatinine	 x	 	 	 	

	 Serum	glucose	 x	 	 	 	

	
White-bloodcell	
count	 	 	 	 	

	 Hemoglobin	 	 	 	 	

																																																													

4	https://www.mrclean-trial.org/mr-predicts.html	
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	 Platelet	count	 	 	 	 	

Medical	history	 	 	 	 	 	

	 Previous	stroke	 x	 	 	 x	

	 Atrial	Fibrillation	 x	 	 x	 	

	 Diabetes	mellitus	 x	 x	 x	 x	

Treatment	 	 	 	 	 	

	 Medical	 	 	 	 	

	
Endovascular	
treatment	(EVT)	 x	 all	got	EVT	 all	got	EVT	 x	

	
Intravenous	
thrombolysis	 x	 x	 x	 x	

Imaging	 	 	 	 	 	

	 ASPECTS	 x	 	
(low,	middle,	

high)	 x	

	
Location	of	
occlusion	

x	 x	 x	 x	

	
Tandem	
occlusion	

	 	 	 	

	 CTP	CVB	volume	 	 	 	 	

	
CTP	Tmax	6	
volume	

	 	 	 	

	
CTP	mismatch	
ratio	

	 	 	 	

	
CTP	mismatch	
volume	

	 	 	 	

	
Collateral	score	
(CTA)	

x	 	 	 x	

Workflow	 	 	 	 	 	

	
Start	of	
thrombolysis	

x	 	 	 	

	 Onset-to-imaging	
	 x	 	 	

	
Onset-to-
admission	 	 	 	 	

	 Onset-to-groin	 x	 x	 	 x	

	
Onset-to-
recanalization	 x	 x	 	 	

	
Pre-procedure	
mTICI	 	 x	 	 	

	
Post-procedure	
mTICI	

x	 x	 x	 	
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Procedural	
complications	 	 	 	 	

Outcomes	 	 	 	 	 	

24hrs	 	 	 	 	 	

	 NIHSS	 x	 x	 x	 	

	
Symptomatic	ICH	
conversion	 	 	 	 	

	 Groin	hematoma	 	 	 	 	

	 Seizure	 	 	 	 	

	 Infection	 x	 	 	 	

	
Congestive	heart	
failure	 	 	 	 	

90days	 	 	 	 	 	

	 mRS	 x	 x	 x	 x	

	

Retrospective	dataset	statistics	
Table	6	Summary	statistics	for	the	German	Stroke	Registry	Dataset	

	 count	 mean	 std	 min	 25%	 50%	 75%	 max	

AGE	 5412	 73.20048	 13.144924	 0	 65	 76	 82	 100	

AGE_MISS
ING	 5412	 0.000554	 0.02354	 0	 0	 0	 0	 1	

SEX_F	 5412	 0.507206	 0.500733	 -1	 0	 1	 1	 1	

NIHSS_BL	 5412	 14.295455	 7.543217	 -1	 9	 14	 19	 42	

NIHSS_BL
_MISSING	 5412	 0.015706	 0.124346	 0	 0	 0	 0	 1	

MRS_PRE	 5412	 0.676644	 1.229235	 -1	 0	 0	 1	 5	

MRS_PRE
_MISSING	 5412	 0.029749	 0.169909	 0	 0	 0	 0	 1	

AF	 5412	 0.401515	 0.514888	 -1	 0	 0	 1	 1	

DM	 5412	 0.208056	 0.434114	 -1	 0	 0	 0	 1	

IVT	 5412	 0.504065	 0.509186	 -1	 0	 1	 1	 1	

MRS_90	 5412	 3.435144	 2.159943	 0	 1	 4	 6	 6	

EVT	 5412	 1	 0	 1	 1	 1	 1	 1	

ONSET_T
O_GROIN	 5412	 0	 0	 0	 0	 0	 0	 0	

ONSET_T
O_GROIN_

MISSING	 5412	 1	 0	 1	 1	 1	 1	 1	
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Table	7	Summary	statistics	for	the	MRCLEAN	dataset	

 count	 mean	 std	 min	 25%	 50%	 75%	 max	

AGE	 500	 64.932	 13.76948	 23	 55.75	 66	 76	 97	

AGE_MISS
ING	 500	 0	 0	 0	 0	 0	 0	 0	

SEX_F	 500	 0.416	 0.493387	 0	 0	 0	 1	 1	

NIHSS_BL	 500	 17.598	 5.572657	 3	 14	 18	 22	 38	

NIHSS_BL
_MISSING	 500	 0	 0	 0	 0	 0	 0	 0	

MRS_PRE	 500	 0.342	 0.826076	 0	 0	 0	 0	 5	

MRS_PRE
_MISSING	 500	 0	 0	 0	 0	 0	 0	 0	

AF	 500	 0.27	 0.444404	 0	 0	 0	 1	 1	

DM	 500	 0.136	 0.343132	 0	 0	 0	 0	 1	

IVT	 500	 0.89	 0.313203	 0	 1	 1	 1	 1	

EVT	 500	 0.434	 0.496121	 0	 0	 0	 1	 1	

ONSET_T
O_GROIN	 500	 114.99	 138.82085	 0	 0	 0	 240.75	 455	

ONSET_T
O_GROIN_

MISSING	 500	 0.566	 0.496121	 0	 0	 1	 1	 1	

MRS_90	 500	 3.74	 1.615432	 0	 2	 4	 5	 6	

	

Table	8	Summary	statistics	for	the	HBD	dataset	

	 count	 mean	 std	 min	 25%	 50%	 75%	 max	

AGE	 267	 67.70412	 15.196164	 0	 59	 71	 78	 95	

AGE_MISS
ING	 267	 0.003745	 0.061199	 0	 0	 0	 0	 1	

SEX_F	 267	 0.52809	 0.500148	 0	 0	 1	 1	 1	

NIHSS_BL	 267	 15.681648	 6.185096	 0	 12	 16	 20	 33	

NIHSS_BL
_MISSING	 267	 0	 0	 0	 0	 0	 0	 0	

MRS_PRE	 267	 0.719101	 1.03679	 -1	 0	 0	 1	 4	

MRS_PRE
_MISSING	 267	 0.011236	 0.105601	 0	 0	 0	 0	 1	

AF	 267	 -1	 0	 -1	 -1	 -1	 -1	 -1	
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DM	 267	 0.179775	 0.403792	 -1	 0	 0	 0	 1	

IVT	 267	 0.621723	 0.485868	 0	 0	 1	 1	 1	

EVT	 267	 1	 0	 1	 1	 1	 1	 1	

ONSET_T
O_GROIN	 267	

598.44194
8	

698.45233
3	 63	 252	 392	 731.5	 6374	

ONSET_T
O_GROIN_

MISSING	 267	 0	 0	 0	 0	 0	 0	 0	

MRS_90	 267	 3.213483	 1.794762	 0	 2	 3	 4	 6	
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Appendix	B	Report	on	experiments	in	T2.4	
Experiment	1:	Neural	Networks	

Rationale	
In	this	section,	we	present	the	experiments	we	have	performed	using	neural	network	models	to	predict	
functional	outcome	of	ischemic	stroke	patients	measured	by	the	mRS	score.	As	discussed	above,	neural	
networks	have	the	most	straightforward	adaptation	for	 federated	 learning,	 thus	we	targeted	these	
models	for	inclusion	within	our	work.	In	this	experiment,	we	aimed	to	train	models	on	a	single	source	
of	retrospective	data	(GSR)	and	test	how	its	performance	is	retained	on	other	sources	of	retrospective	
data	originating	from	other	centres	(population).	

Methods	
Data	

For	training	and	hyperparameter	search	we	used	retrospective	data	from	the	German	Stroke	Registry,	
statistics	can	be	found	in	the	previous	section.	As	highlighted	in	the	current	state	of	the	Data	schema	
(see	Table	5)		we	included	the	following	input	variables:	

- Age	
- Biological	sex	
- Baseline	NIHSS	
- Pre-stroke	mRS	
- Atrial	fibrillation	
- Diabetes	mellitus	
- Intravenous	thrombolysis	
- Endovascular	treatment	
- (Time	from	stroke	onset	to	groin)	-	not	present	in	training	data,	but	used	in	some	experiments	

in	the	external	evaluation	data	(MRCLEAN,	HDB)	

Even	 though	 we	 considered	 a	 smaller	 set	 of	 variables	 for	 these	 first	 experiments	 than	 the	
comprehensive	list	in	our	Data	schema,	there	were	still	cases	of	variables	represented	in	one	data	and	
not	in	others.	Overcoming	this	issue	in	a	rather	flexible	way	is	desirable	since	it	might	happen	in	the	
actual	use	of	the	model	that	some	variables	are	non-collectable.	For	the	following	experiments,	we	
experimented	with	the	following	approach:	

- For	nominal	variables,	an	additional	class	of	“unknown”	is	introduced	(with	a	value	of	-1)	
- For	ordinal	variables,	an	additional	indicator	variable	is	introduced,	and	unknown	values	are	

filled	with	-1	
- For	continuous	variables,	an	additional	indicator	variable	is	introduced,	and	unknown	values	

are	filled	with	0	

We	 tested	 this	 approach	 against	 omitting	 variables	 with	 missing	 values	 and	 did	 not	 observe	 a	
significant	change	in	prediction	performance.	

Furthermore,	 in	 the	 GSR	 data,	 all	 patients	 received	 endovascular	 treatment	 by	 mechanical	
thrombectomy	(similar	to	the	HDB	dataset).	This	is	of	course	another	limitation	that	we	will	specifically	
analyse	in	the	future.	Seeing	only	patients	eligible	for	treatment	introduces	a	bias	to	the	data	sample	
(and	hence	the	model)	and	means	also	that	the	model’s	prediction	with	respect	to	an	outcome	might	
not	be	precise	for	those	not	eligible.	To	assess	this,	we	include	an	evaluation	of	performance	on	the	
subgroups	of	patients	from	MRCLEAN	who	did	or	did	not	receive	(due	to	randomization)	endovascular	
treatment	(referenced	as	“EVT	only”	and	“without	EVT”).	
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Another	detail	is	that	onset-to-groin	times	were	not	collected	in	the	GSR	database.	In	contrast	to	the	
previous	case,	this	means	we	will	have	to	omit	this	variable	when	evaluating	the	model	since	the	model	
has	 not	 seen	 any	 interaction	 (or	 possible	 distribution)	 of	 this	 variable.	 Both	 these	 limitations	 are	
reflected	on	below	in	the	results	section.	Lastly,	the	HDB	dataset	did	not	contain	information	about	
Atrial	fibrillation,	thus	we	encoded	all	as	missing.	

As	a	 target	variable	we	used	the	mRS	score	 in	 two	common	ways.	First,	we	employed	the	classical	
dichotomization	 and	 trained	models	 to	 predict	 the	 binary	 outcome	 (referenced	 as	 “dichotomized	
model”):	

- mRS	0	-	2	->	good	outcome	
- mRS	3	-	6	->	bad	outcome	

Second,	we	took	the	full-scale	mRS	score	and	trained	a	multi-class	model	to	deliver	a	probability	score	
for	each	of	the	7	classes	of	the	mRS	scale,	these	probabilities	add	up	to	1.	This	model	is	referenced	as	
“full-scale	model”.	Moreover,	we	included	an	evaluation	of	these	full-scale	models	in	the	dichotomized	
and	in	a	trichotomized	representation.	This	enables	us	to	compare	the	binary	prediction	performance	
of	the	dichotomized	and	the	full-scale	model	and	also	to	compare	our	results	to	the	literature	(where	
full-scale	mRS	is	not	classically	predicted).	For	the	trichotomy	we	used:	

- mRS	0	–	2	->	favourable	outcome,			
- mRS	3	–	4	->	intermediate	outcome,		
- mRS	5	–	6	->	miserable	outcome	

Model	

The	model	we	employed	was	a	neural	network,	with	batch	normalization	layer	before	hidden	layers	
and	dropout	after	them.	The	number	of	hidden	layers,	number	of	neurons	in	each	layer	and	rate	of	
dropout	was	tuned	through	hyperparameter	search	on	the	validation	sets.	

Experimental	setup	
For	training	and	evaluating	models	in	a	robust	way	we	employed	a	4-fold	cross-validation	mechanism,	
with	non-overlapping	 test	 sets	 and	 random	validation	 sets	 (25%)	 separated	 from	 training	 folds	 for	
hyperparameter	tuning.	A	visualization	is	shown	in	Figure	5.	Zero	mean,	unit	variance	standardization	
was	applied	to	continuous	variables	with	training	statistics.	We	report	average	test	performance	across	
the	4	 test	 sets.	 For	hyperparameter	 search	we	used	Random	Search	 in	 each	 fold.	 This	 results	 in	 4	
models	and	parameter	sets,	from	which	we	pick	the	best	for	further	evaluation	on	the	MRCLEAN	and	
HDB	datasets.	Models	were	 evaluated	using	 the	Area	Under	 the	Receiver	Operator	 Characteristics	
curve	(ROC	AUC),	Accuracy,	Balanced	accuracy	(average	of	class	recalls)	and	F1	score	in	case	of	binary	
predictions	and	using	macro	ROC	AUC	and	macro	F1	score	for	multi-class	predictions.			
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Figure	5	Visualisation	of	the	cross-fold	validation	process	

Results	
In	 the	 following	 sections	 we	 present	 our	 results	 for	 all	 executed	 experiments.	 As	 a	 summary	 we	
evaluate	 dichotomized	 and	 full-scale	 model	 performance	 on	 all	 evaluation	 metrics	 and	 confusion	
matrices	on:	

• GSR	test	sets	
• All	patients	from	MRCLEAN,	HDB	
• EVT	only	and	without	EVT	patients	in	MRCLEAN	
• Patients	from	the	top	6	most	represented	centers	of	MRCLEAN	
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Comparison	of	test	performance	

	

Figure	6	ROC	AUC.	Comparison	of	test	performances	on	GSR,	HDB	and	MRCLEAN	dataset.	

	

Figure	7	Accuracy.	Comparison	of	test	performances	on	GSR,	HDB	and	MRCLEAN	dataset.	

	

	

Figure	8	Balanced	Accuracy.	Comparison	of	test	performances	on	GSR,	HDB	and	MRCLEAN	dataset.	

	

	

Figure	9	F1	score.	Comparison	of	test	performances	on	GSR,	HDB	and	MRCLEAN	dataset.	
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Confusion	matrices	for	test	predictions	

	

	

Figure	10	Confusion	matrix	normalized	over	the	true	labels.	Test	predictions	on	GSR	dataset.	Dichotomized	
model.	

	

	

Figure	11	Confusion	matrix	normalized	over	the	true	labels.	Test	predictions	on	GSR	dataset.	Full-scale	model.	

	

	

Figure	12	Confusion	matrix	normalized	over	the	true	labels.	Test	predictions	on	HDB	dataset.	Full-scale	model.	
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Figure	13	Confusion	matrix	normalized	over	the	true	labels.	Test	predictions	on	MRCLEAN	dataset.	Full-scale	
model.	

	

	

Figure	14	Confusion	matrix	normalized	over	the	true	labels.	Test	predictions	on	MRCLEAN	dataset	–	patients	
with	EVT.	Full-scale	model.	

	

	

Figure	15	Confusion	matrix	normalized	over	the	true	labels.	Test	predictions	on	MRCLEAN	dataset	–	patients	
without	EVT.	Full-scale	model.	
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Test	performance	for	diverse	datasets	

Table	9	Performance	of	models	trained	on	GSR	data,	evaluated	on	GSR	data.	Average	of	4	non-overlapping	
test	folds.	1353	patients	per	fold.	

 Dichotomized 
model 

Full-scale model 

Metrics on 
test sets – 
mean (std) 

Dichotomized 
performance 

Dichotomized 
performance 

Trichotomized 
performance	

Full-scale 
performance 

ROC	AUC	 0.813	(0.008)	 0.813	(0.007)	 0.733	(0.008)	 0.681	(0.006)	

ACC	 0.747	(0.003)	 0.749	(0.006)	 0.588	(0.010)	 0.362	(0.012)	

BALANCED	
ACC	

0.718	(0.008)	 0.718	(0.011)	 0.526	(0.007)	 0.243	(0.012)	

F1	 0.805	(0.005)	 0.807	(0.005)	 0.473	(0.004)	 0.193	(0.010)	

Table	10	Performance	of	models	trained	on	GSR	data,	evaluated	on	HDB	data.	All	267	patients.	

 Dichotomized 
model 

Full-scale model 

 Dichotomized 
performance 

Dichotomized 
performance 

Trichotomized 
performance	

Full-scale 
performance 

ROC	AUC	 0.717	 0.711	 0.666	 0.664	

ACC	 0.678	 0.655	 0.423	 0.202	

BALANCED	
ACC	

0.621	 0.583	 0.480	 0.197	

F1	 0.768	 0.762	 0.349	 0.106	

Table	11	Performance	of	models	trained	on	GSR	data,	evaluated	on	MRCLEAN	data.	All	500	patients.	

 Dichotomized 
model 

Full-scale model 

 Dichotomized 
performance 

Dichotomized 
performance 

Trichotomized 
performance	

Full-scale 
performance 

ROC	AUC	 0.683	 0.716	 0.696	 0.635	

ACC	 0.736	 0.734	 0.494	 0.230	

BALANCED	
ACC	

0.626	 0.640	 0.492	 0.234	

F1	 0.828	 0.823	 0.489	 0.176	
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Table	12	Performance	of	models	trained	on	GSR	data,	evaluated	on	MRCLEAN	data.	Patients	with	EVT	-	217	
patients.	

 Dichotomized 
model 

Full-scale model 

 Dichotomized 
performance 

Dichotomized 
performance 

Trichotomized 
performance	

Full-scale 
performance 

ROC	AUC	 0.715	 0.728	 0.700	 0.647	

ACC	 0.654	 0.664	 0.442	 0.221	

BALANCED	
ACC	

0.674	 0.677	 0.492	 0.239	

F1	 0.708	 0.720	 0.380	 0.155	

Table	13	Performance	of	models	trained	on	GSR	data,	evaluated	on	MRCLEAN	data.	Patients	without	EVT	-	
283	patients.	

 Dichotomized 
model 

Full-scale model 

 Dichotomized 
performance 

Dichotomized 
performance 

Trichotomized 
performance	

Full-scale 
performance 

ROC	AUC	 0.682	 0.683	 0.700	 0.677	

ACC	 0.799	 0.788	 0.534	 0.237	

BALANCED	
ACC	

0.500	 0.539	 0.442	 0.192	

F1	 0.888	 0.878	 0.428	 0.114	
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Experiment	2:	Tree-based	Methods	

Rationale	
As	mentioned	early	in	this	deliverable,	the	development	and	application	of	tree-based	FL	are	still	very	
limited	compared	to	FL	with	neural	network	models.	Furthermore,	studies	have	reported	that	tree-
based	models	may	outperform	deep	learning	approaches	on	tabular	data	[30].	To	better	estimate	the	
potential	of	using	tree-based	models	to	predict	post-stroke	outcome	of	patients	at	90	days	after	stroke	
using	clinical	data,	we	performed	a	single-site	in-lab	experiment	using	a	number	of	tree-based	machine	
learning	approaches	on	the	MRCLEAN	data.	The	work	reported	here	was	completed	at	the	TU	Dublin	
site	and	we	are	currently	working	on	transferring	the	trained	models	to	CUB	and	MBH	for	a	broader	
validation	on	the	datasets	available	at	these	sites,	and	after	that	to	work	with	CUB	and	MBH	on	the	
implementation	of	a	tree-based	FL	for	medical	applications	together	with	guidelines	on	the	use	of	the	
framework	and	validation	and	verification	methods.	

Pre-processing	of	MRCLEAN	data			
To	train	the	tree-based	models,	we	use	MRCLEAN	data.	Prior	to	training	the	models	the	data	were	pre-
processed	as	follows:	

i. Selecting	the	common	input	features	for	modelling	(see	Table	5)	
ii. Adding	new	features	that	detail	the	absence	of	the	considered	features	such	as	age,	NIHSS	at	

baseline,	MRS	before	90	days	after	stroke.	In	this	way,	we	can	keep	the	majority	of	patients	
for	the	data	after	filtering.	

iii. Applying	standard	normalization	to	the	continuous	features,	such	as	age,	NIHSS	at	bas-	line,	
MRS	before	90	days	after	stroke	and	the	onset-to-groin	time.	

iv. Extracting	MRS	scores	at	90	days	after	stroke	as	the	output	label	for	prediction,	such	as	the	
original	full-scale	of	MRS,	the	binarized	and	the	trichotomized	mRS	scale	generated	from	the	
full-scale	MRS	(as	described	in	Experiment	1:	Neural	Networks)	

After	being	pre-processed,	data	is	then	used	for	training	and	validation	of	the	tree-based	models.	In	
this	work,	we	developed	three	commonly	used	tree-based	machine	learning	models	namely	Decision	
Tree,	Random	Forest	and	XGBoost.	The	next	section	will	briefly	describe	those	approaches.	

Description	of	tree-based	methods	

1. Decision	tree	

A	Decision	Tree	(DT)	is	an	information-based	machine	learning	model	that	makes	predictions	based	on	
“if-then-else”	rules	in	a	hierarchical	tree	structure	[35].	Each	tree	is	composed	of	multiple	nodes	that	
link	together	in	a	hierarchical	way,	where	each	node	defines	one	attribute	to	test.	The	structure	of	the	
tree	starts	from	a	root	node	that	links	to	internal	nodes	and	terminates	at	the	leaf	nodes;	the	linkages	
between	nodes	are	called	branches.		

Generally,	 decision	 trees	 are	 built	 in	 a	 recursive	 and	 depth-first	manner,	 i.e.,	 the	 algorithm	 starts	
building	the	tree	at	the	root	node	and	then	 iteratively	grows	the	tree	by	extending	the	 leaf	nodes.	
Briefly,	the	algorithm	for	creating	a	decision	tree	from	data	follows	three	main	steps:	

i. Selecting	the	best	descriptor	using	a	feature	selection	measure	(such	as	information	gain)	as	
the	split	criterion	at	the	root	node	

ii. Adding	 the	 root	 node	 to	 the	 tree	 and	 labelling	 it	 with	 the	 split	 criterion	 of	 the	 selected	
descriptor	found	in	i)	

iii. Splitting	the	training	dataset	using	the	criterion	of	the	node	from	ii)	into	partitions.	For	each	
partition,	a	branch	is	then	grown	from	the	considered	node.	
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Steps	i),	ii)	and	iii)	are	then	repeated	for	each	newly	created	branch	using	the	relevant	partitions	of	the	
training	dataset	in	iii)	while	excluding	the	descriptors	that	were	used	for	the	splitting.	These	steps	are	
repeated	until	all	the	data	points	in	the	relevant	partition	have	the	same	class	label	(or	some	other	
convergence	criterion	 is	reached,	e.g.,	maximum	depth	of	the	tree,	minimum	number	of	examples,	
etc.).	At	that	time,	a	leaf	node	is	then	created	for	predicting	the	data	point	with	the	majority	class	label	
for	the	training	examples	that	have	reached	the	node.		

In	this	work,	we	use	one	of	the	most	popular	decision	tree	algorithms	named	CART	(classification	and	
regression	trees)	[36]	which	is	available	in	Scikit-Learn	library	for	predicting	the	outcome	of	patients	
with	stroke.	

2. Random	Forest		

A	Random	Forests	(RF)	is	an	ensemble	learning	method	that	trains	in	parallel	a	set	of	decision	trees	
[37].	Each	tree	 is	 trained	on	a	different	random	bootstrap	subset	that	 is	sampled	from	the	training	
dataset,	 i.e.,	 the	 subset	 sample	 has	 the	 same	 number	 of	 data	 points	 as	 the	 training	 dataset	 and	
sampling	is	done	with	replacement.	When	predicting	a	new	data	point,	each	tree	will	vote	for	the	class	
label	that	the	unknown	data	point	belongs	to.	The	class	label	returned	from	the	ensemble	is	the	label	
that	receives	the	majority	of	votes	from	across	the	trees	of	the	RF.		

The	application	of	RF	in	this	work	is	done	by	using	RandomForestClassifier	class	available	in	Scikit-Learn	
library.	

3. XGBoost	

Boosting	is	an	ensemble	machine	learning	strategy	that	aims	to	combine	multiple	models	together	and	
generate	 a	better	model.	Gradient	Boosting	 [38]	 is	 one	of	 the	best-known	boosting	methods.	 This	
method	creates	a	tree	ensemble	by	sequentially	adding	decision	trees	to	the	ensemble.	Each	tree	is	
created	in	the	way	that	it	corrects	for	the	errors	made	by	the	trees	previously	added	to	the	ensemble;	
i.e.,	this	method	tries	to	fit	a	new	decision	tree	to	the	residual	errors	that	are	made	by	the	previous	
tree.	

We	used	the	python	library	XGBoost	(Extreme	Gradient	Boosting)	to	train	and	implement	our	XGBoost	
models.		

Parameters	and	Evaluation	metrics		
In	 these	experiments,	20%	of	 the	dataset	was	randomly	selected	to	create	a	hold-out	 test	set.	The	
remaining	of	80%	of	the	dataset	is	used	to	train	the	models.	To	find	the	optimal	parameters	for	each	
tree-based	model,	we	applied	randomized	cross-validated	search	on	the	training	set	using	k=4	as	the	
number	of	k-fold	cross-validation.	All	 the	experiments	were	run	with	10	random	seeds,	going	 from	
seed	value	0	to	9.	The	details	of	the	values	of	parameters	used	for	training	each	model	are	detailed	in	
Table	14	below.	
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Table	14	Parameters	of	tree-based	models	used	for	randomized	cross-validated	search	

Model	 Parameter		 Values	

Decision	Tree	 	  
 Feature	selection	measure		 Gini,	Entropy	
	 Maximum	depth	of	a	tree	 [3,	5,	7,	9,	11,	13,	15,	20,	25,	no	limit]	
Random	Forest	 	
 Number	of	estimators	 [10,	20,	…,	180]	
	 Feature	selection	measure		 Gini,	Entropy	
	 Maximum	depth	of	a	tree	 [3,	5,	7,	9,	11,	13,	15,	20,	25,	no	limit]	
	 Using	boostrap	 True,	False	
XGBoost	 	  
 Learning	rate	 [0.01,	0.05,	0.1,	0.15,	0.20,]	
	 Maximum	depth	of	a	tree	 [3,	5,	7,	9,	11,	13,	15,	20,	25,	no	limit]	
	 Maximum	number	of	nodes	to	be	added	 [5,	10,	…	45]	
	 Number	of	trees	 [10,	20,	…,	180]	
	

The	evaluation	metric	used	in	this	work	 is	mainly	F1-score	which	is	a	harmonic	mean	precision	and	
recall	 of	 the	 model	 [39].	 Similar	 to	 the	 previous	 experiment	 (as	 in	 Section	 Experiment	 1:	 Neural	
Networks)	macro-averaged	F1-score	was	calculated	and	we	used	this	metric	to	evaluate	the	prediction	
between	models.	

Results	
The	tree	models	were	trained	to	predict	the	dichotomized	mRS	score	and	the	full-scale	mRS.	Then,	
from	the	prediction	of	the	full-scale	mRS	model,	we	generated	the	trichotomized	and	dichotomized	
mRS	 values	 for	 evaluating	 the	 prediction	 results	 between	 methods.	 Table	 15	 below	 shows	 the	
performance	of	the	three	studied	tree-based	models	after	training	and	validation	on	MRCLEAN	data.	

Table	15	TTT	Prediction	results	of	the	tree-based	modelling	for	predicting	dichotomized	and	full-scale	mRS	of	
MRCLEAN	data.	STD	-	Standard	deviation,	CI	-	Confidence	interval	at	95%.	

Tree-
based	
model	 Metrics	

Dichotomized	mRS	 Full-scale	mRS	

Trichotomized	from	
predicted	full-scale	

mRS	

Dichotomized	from	
predicted	full-scale	

mRS	

Mean	 STD	 CI	 Mean	 STD	 CI	 Mean	 STD	 CI	 Mean	 STD	 CI	

Decision	
Tree	

F1-score	 0.550	 0.037	 0.023	 0.170	 0.025	 0.015	 0.443	 0.040	 0.025	 0.564	 0.059	 0.036	

Precision	 0.656	 0.066	 0.041	 0.177	 0.047	 0.029	 0.444	 0.041	 0.025	 0.567	 0.059	 0.037	

Recall	 0.557	 0.026	 0.016	 0.190	 0.031	 0.019	 0.459	 0.046	 0.029	 0.567	 0.059	 0.037	

Accuracy	 0.754	 0.018	 0.011	 0.263	 0.050	 0.031	 0.461	 0.029	 0.018	 0.680	 0.041	 0.025	

Random	
Forest	

F1-score	 0.490	 0.054	 0.033	 0.192	 0.027	 0.017	 0.486	 0.031	 0.019	 0.574	 0.032	 0.020	

Precision	 0.594	 0.181	 0.112	 0.211	 0.045	 0.028	 0.505	 0.039	 0.024	 0.608	 0.061	 0.038	

Recall	 0.527	 0.027	 0.017	 0.213	 0.025	 0.016	 0.502	 0.032	 0.020	 0.569	 0.028	 0.017	

Accuracy	 0.750	 0.016	 0.010	 0.310	 0.047	 0.029	 0.518	 0.034	 0.021	 0.724	 0.033	 0.020	

XGBoost	

F1-score	 0.540	 0.023	 0.014	 0.187	 0.027	 0.017	 0.455	 0.062	 0.038	 0.541	 0.044	 0.027	

Precision	 0.606	 0.073	 0.045	 0.204	 0.058	 0.036	 0.456	 0.059	 0.036	 0.548	 0.050	 0.031	

Recall	 0.545	 0.020	 0.012	 0.200	 0.031	 0.019	 0.469	 0.065	 0.040	 0.541	 0.040	 0.025	

Accuracy	 0.728	 0.033	 0.020	 0.272	 0.038	 0.023	 0.480	 0.056	 0.034	 0.681	 0.032	 0.020	
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For	all	three	models	the	F1-score	obtained	for	predicting	Dichotomized	mRS	is	much	higher	than	that	
for	the	Full-Scale	mRS	target.	For	 full-scale	mRS,	Random	Forest	obtains	the	best	performance	(F1-
score	of	0.192,	standard	deviation	of	0.027,	confidence	interval	at	95%	is	0.017)	and	for	dichotomized	
mRS,	Decision	 Tree	 is	 the	optimal	 one	 (F1-score	of	 0.550,	 standard	deviation	of	 0.037,	 confidence	
interval	at	95%	is	0.023).	

Interestingly,	 for	all	 three	model	 types,	 if	we	dichotomize	 the	predicted	mRS	 from	a	 full-scale	mRS	
model,	the	performance	results	are	better	than	the	corresponding	model	that	was	trained	to	predict	
a	dichotomized	score.	This	suggests	that	in	many	instances	the	errors	of	the	full-scale	mRS	model	are	
caused	by	predictions	that	are	for	neighbouring	labels	to	the	true	label	(i.e.,	the	model	has	many	near	
misses).	Extending	this	approach	to	trichotomized	results	shows	a	decrease	in	performance	compared	
to	either	directly	predicting	or	posthoc	mapping	full-scale	mRS	predictions	to	dichotomised	prediction	
results,	but	an	improvement	compared	to	the	original	full-scale	prediction.	Overall	the	best	F1-score	
is	obtained	by	the	RF	model	using	a	dichotomized	from	the	predicted	full	mRS	(F1-score	of	0.574,	a	
standard	deviation	of	0.032,	confidence	interval	at	95%	is	0.020).	Similar	trends	of	improvement	can	
also	be	seen	for	DT	and	XGBoost	when	we	dichotomize	the	predicted	mRS	from	the	full-scale	mRS	
models	rather	than	predict	dichotomized	scores	directly.	This	suggests	that	an	interesting	direction	for	
future	work	may	be	to	explore	the	trade-off	between	predicting	full-scale	mRS	and	the	level	of	detail	
that	 a	 clinician	 requires	 for	 their	 decisions.	However,	 overall	 none	of	 these	models	 have	 obtained	
sufficiently	high	performance	to	be	useful	in	a	clinical	setting.	We	believe	that	using	a	larger	dataset	
would	improve	performance,	and	we	will	explore	the	benefits	of	this	in	later	experiments	when	we	
apply	FL	for	tree-based	methods	across	multiple	sites.	These	results	will	provide	a	useful	baseline	for	
these	future	experiments.	Also,	if	we	compare	these	results	with	the	results	from	the	neural	network	
experiments	on	MRCLEAN	reported	in	Figure	9	we	see	that	both	the	neural	networks	and	tree-based	
models	obtain	similar	F1	scores	on	this	data	in	the	full-scale	mRS	setting,	however	the	neural	models	
tend	to	outperform	the	tree-based	models	in	the	other	settings.	Better	understanding	what	is	causing	
this	difference	in	another	direction	for	future	research.	

To	understand	which	feature	contributes	most	to	the	predictions	of	the	trained	models	(dichotomized	
mRS	and	full-scale	mRS),	feature	importance	was	extracted	from	these	tree-based	models.	Figure	16	
and	 Figure	 17	 respectively	 illustrate	 the	 feature	 importance	 returned	 by	 the	models	 of	 predicting	
dichotomized	and	full-scale	mRS.	We	annotated	the	name	of	the	input	features	as	follows:	

• AGE:	age	of	the	patient	at	randomization	
• AGE_MISSING:	the	feature	that	states	if	age	of	the	patient	is	missing.	
• SEX_F:	gender	of	the	patient	
• NIHSS_BL:	NIHSS	score	at	randomization.		
• NIHSS_BL_MISSING:	the	feature	that	states	if	NIHSS	is	missing.	
• MRS_PRE:	pre-stroke	MRS.	
• MRS_PRE_MISSING:	the	feature	that	states	if	PRE_MRS	is	missing.	
• AF:	Atrial	fibrillation		
• DM:	Diabetes	mellitus		
• IVT:	Intravenous	thrombolysis		
• EVT:	Endovascular	treatment		
• ONSET_TO_GROIN:	Time	from	stroke	onset	to	groin	
• ONSET_TO_GROIN_MISSING:	the	feature	that	states	if	the	time	from	stroke	onset	to	groin	

is	missing.	
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Figure	16	Feature	importance	of	tree-based	models	trained	for	predicting	the	dichotomized	mRS	of	the	
patient	at	90	days	after	stroke.	

As	shown	in	Figure	16,	the	four	features	that	contribute	most	to	the	predictions	of	the	dichotomized	
mRS	 models	 are	 NIHSS_BL,	 AGE,	 ONSET_TO_GROIN	 and	 MRS_PRE.	 Depending	 on	 the	 tree-based	
approach,	the	order	of	importance	of	these	features	is	different.	For	the	DT	model	(which	was	the	best	
performing	model	on	the	dichotomized	mRS	prediction	task),	the	most	important	feature	is	NIHSS_BL,	
then	followed	by	AGE,	ONSET_TO_GROIN	and	MRS_PRE.	The	features	EVT,	 IVT,	DM	and	AF	are	the	
feature	 that	 present	 a	 low	 importance	 to	 the	 model.	 Moreover,	 the	 additional	 feature	 like	
AGE_MISSING,	MRS_PRE_MISSING,	NIHSS_BL_MISSING	and	ONSET_TO_GROIN_MISSING	were	shown	
to	be	the	least	or	no	importance	for	the	prediction.	
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Figure	17	Feature	importance	of	tree-based	models	trained	for	predicting	the	full-scale	mRS	of	the	patient	at	
90	days	after	stroke.	

A	similar	feature	importance	analysis	is	shown	in	Figure	17	for	the	full-scale	mRS	prediction	models.	
The	 top	 four	 features	 that	 contribute	 to	 the	 full-scale	 mRS	 models	 are	 AGE,	 NIHSS_BL,	
ONSET_TO_GROIN	and	MRS_PRE	(or	DM	for	XGBoost).	For	the	RF	model	(the	best	performing	model	
for	predicting	full-scale	mRS	score),	the	most	important	feature	is	AGE,	then	followed	by	NIHSS_BL,	
ONSET_TO_GROIN	and	MRS_PRE.	The	features	EVT,	IVT,	DM	and	AF	are	the	feature	that	present	a	low	
importance	 to	 the	 model.	 The	 additional	 feature	 like	 AGE_MISSING,	 MRS_PRE_MISSING,	
NIHSS_BL_MISSING	and	ONSET_TO_GROIN_MISSING	were	shown	to	be	the	least	or	no	importance	for	
the	prediction.	

Comparing	the	feature	importance	of	these	tree-based	models	we	conclude	that	the	age	of	the	patient,	
the	NIHSS	score	at	 randomization,	 the	onset	 to	groin	time	and	the	mRS	score	before	90	days	after	
stroke	are	the	most	 important	 information	that	contribute	to	the	prediction	of	the	outcome	of	the	
patient	at	90	days	after	stroke.	Furthermore,	the	procedure	of	dichotomizing	the	predicted	mRS	from	
the	full-scale	mRS	improves	the	prediction	of	dichotomized	mRS	and	Random	Forrest	is	shown	to	be	
the	most	adaptable	machine-learning	method	for	this	procedure.	The	feature	importance	obtained	by	
the	models	seems	sensible.	At	this	point,	the	models	are	not	obtaining	sufficiently	high	performance	
to	be	considered	for	clinical	use,	and	so	we	did	not	ask	clinicians	to	review	the	feature	ranking	by	the	
models	as	we	did	not	wish	to	waste	clinicians'	time	on	assessing	a	weak	model.	However,	as	the	models	
become	more	mature	and	their	performance	improves	this	type	of	feature	analysis	will	be	used	as	one	
of	the	methods	for	discussing	and	explaining	model	decisions	with	clinicians.	

Although	the	obtained	performance	is	low,	this	preliminary	result	is	used	as	fundamental	work	that	
will	feed	into	later	iterations	of	model	development,	validation	and	verification.	In	particular,	we	are	
keen	to	explore	how	the	performance	of	tree-based	models	developed	using	FL	across	multiple	sites	
compares	with	single-site	models.		
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Appendix	 C	 Literature	 Review	 on	 Federated	 Learning	
Applications	
	

In	this	appendix,	we	provide	an	overview	of	the	federated	learning	literature,	and	where	the	paper	
reports	an	experiment	we	include	a	brief	summary	of	the	experimental	methods	and	training	scheme	
reported	in	each	paper.	This	review	is	ongoing	and	the	information	reported	here	is	best	understood	
as	working	notes	that	are	tracking	our	preparations	towards	the	review	publication.	

	

Title	 DOI	 Methods, Experiments	 Training scheme 

Distributed learning: 
Developing a 
predictive model 
based on data from 
multiple hospitals 
without data leaving 
the hospital – A real 
life proof of concept	

https://doi.
org/10.101
6/j.radonc.
2016.10.00
2	

distributed learning with 
aggregation server	

- CPTs were obtained by learning 
locally from each hospital.	
 - 5-fold cross-validation using 80% of 
all patients selected at random for 
training	
- The CPTs were sent to the central 
location, where they were combined by 
weighted averaging: Individual table 
entries were weighted in proportion to 
the number of patients available at the 
hospital.	
- The weighted CPTs, which comprise 
the global model, were sent back to 
each site to be validated on the 
remaining 20% of patients on each 
site.	
- This was repeated 5 times. 

Communication-
Efficient Learning of 
Deep Networks from 
Decentralized Data	

https://doi.
org/10.485
50/arXiv.16
02.05629	

IID data partition	
non-IID data partition: for 
MNIST and CIFAR-10 2 
classes per client	
- both partitions are 
balanced: all clients have 
the same number of 
examples (600)	
Experiments: 	
- comparison of FedSGD 
and FedAvg (with varying 
B, E and C) on IID data 
and non-IID data	

-100 clients 

 - most experiments done on MNIST	
 - on CIFAR-10 only one IID 
experiment 

Developing and 
Validating a Survival 
Prediction Model for 
NSCLC Patients 
Through Distributed 
Learning Across 3 
Countries	

https://doi.
org/10.101
6/j.ijrobp.2
017.04.021	

distributed learning with 
aggregation server	

used a formerly adapted method 
(Distributed learning) 
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A Performance 
Evaluation of 
Federated Learning 
Algorithms	

10.1145/32
86490.3286
559	

FL with aggregation 
server	
1. Federated Averaging 
(FedAvg)	
2. Federated 
StochasticVariance 
Reduced Gradient 
(FSVRG) 	
3.. CO-OP 	
4. collaborative data 
sharing (centralized 
dataset)	

FedAvg:	
 - a total of 56 parameter 
configurations tuned in random search	
 - First, we searched for learning rate 
and learning rate decay with fixed C, E 
and B, 	
- after which we try to improve by 
further exploring C and E. 	
 

Federated Learning 
with Non-IID Data	

https://doi.
org/10.485
50/arXiv.18
06.00582	

FL with aggregation 
server	
 non-IID data setting: 
data divided to 2 extreme 
cases:	
 1. 1-class non-IID: each 
client receives data 
partition	
 from only a single class	
 2. 2-class non-IID: each 
client receives data 
partition	
 from 2 classes	
 	
Experiments:	
 1. SGD - model trained 
on centralized data	
 2. FedAvg IID - trained 
on IID data	
 3. FedAvg non-IID - 
trained on non-IID data 
(1-class, 2-class)	
 	
Proposed method:	
 - small subset of data 
from each client is 
globally shared, which 
contains a uniform 
distribution over classes	
 - warm-up model can be 
trained ofn the globally 
shared data and then 
distributed to the clients 
for FL instead of random 
weight initialization	

FedAvg:	
 - 10 clients	
 - batch size: 10 and 100	
 - local epochs: 1 and 5	
 - 500 federated rounds	
 	
SGD:	
 - batch size is 10 times larger. This is 
because the global model from FedAvg 
is averaged across 10 clients at each 
synchronization. FedAvg with IID data 
should	
 be compared to SGD with shuffling 
data and a batch size K times larger, 
where K is the number of	
 clients included at each 
synchronization of FedAvg.	
 	
- all models initialized with the same 
weights	
 	
- cross-validation over 5 distributions 



	

VALIDATE	-			D2.1	 Page	43	of	54	 30/04/2023	

	

Federated learning in 
medicine: facilitating 
multi-institutional 
collaborations 
without sharing 
patient data	

-	 FL with aggregation 
server	
 	
1. federated learning (FL)	
 	
2. institutional 
incremental learning (IIL)	
 	
3. cyclic institutional 
incremental learning 
(CIIL)	
 	
4. collaborative data 
sharing (centralized 
dataset. CDS)	

FedAvg:	
 - 10 clients	
 - unbalanced number of patients in 
clients	
 - up to 200 federated rounds 	
- 1 local epoch per round	
 - all clients selected in each round	
 	
Collaborative cross validation:	
 - each institution’s dataset is 
partitioned into 5 folds	
 - for every experiment five runs are 
performed, using 1 fold for validation 
and the other 4 folds for training	
 	
Final model selection:	
 - Each institution locally validates the 
received model at the start of each 
federated round. 	
- Local validation results are sent to the 
server with the model updates.	
 - Global validation is averaged local 
validation results.	
 	
- loss function: negative log of DICE	
 - Adam optimizer	
 	
hyperparameter tuning:	
 - tuned on the central trained model, 
final hyperparameters used for FL 
model 

Federated learning in 
a medical context: A 
systematic literature 
review	

https://doi.
org/10.114
5/3412357	

-	 - 

Federated learning: a 
collaborative effort to 
achieve better 
medical imaging 
models for individual 
sites that have small 
labelled datasets	

10.21037/qi
ms-20-595	

-	 - 

A collaborative online 
AI engine for CT-
based COVID-19 
diagnosis	

10.1101/20
20.05.10.20
096073, 
preprint	

FL with aggregation 
server	
 	
1. FL - publicly available 
Unified CT-COVID AI 
Diagnostic Initiative 
(UCADI) framework	
   - data from 3 hospitals: 
3 Tongji hospitals in 
Wuhan	
 	
2. FL - UCADI framework	
   - data from 4 hospitals: 
3 Tongji hospitals in 
Wuhan + Wuhan Union 
hospital (WU)	

1. FL - FedAvg	
 - 200 federated rounds, 1 local epoch 
per each round	
 	
2. FL - Federated transfer learning - 
FedAvg	
 - 30 federated rounds, 1 local epoch 
per each round, start training with the 
global model coming from experiment 
1	
 	
5-fold cross-validation on 
train/validation set	
 	
No hyperparameter tuning: same set of 
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3. model trained on 
centralized data from 3 
Tongji hospitals in 
Wuhan (CDS)	

local training hyperparameters for all 
clients. 

Federated Learning 
on Clinical 
Benchmark Data: 
Performance 
Assessment	

10.2196/20
891	

FL with aggregation 
server	
 	
1. centralized ML method 
(CML)	
 	
2. basic FL: IID data 
distribution, each client 
same number of samples	
 	
3. imbalanced FL: each 
client different number of 
samples ranging from 1 
to 600 for MNIST and 
50%, 30%, 20% for 
MIMIC-III and ECG	
 	
4. extremely skewed FL: 
each client had just one 
label from MNIST and 
600 samples	
 	
5. imbalanced and 
skewed FL	

- no cross-validation	
  - don't specify hyperparameter tuning 	
	
- early stopping	
 - SGD 	
 	
 FedAvg:	
 MNIST:	
  - 10 clients	
  - up to 3000 federated rounds, 5 local 
epochs	
  	
 MIMIC-III:	
  - 3 clients	
  - up to 30 federated rounds, 2 local 
epochs	
  	
 ECG:	
  - 3 clients	
  - up to 30 federated rounds, 3 local 
epochs	
  	
 Test set bootstrapping: K=100 for 
MNIST and ECG, K=10000 for MIMIC-
III 

FEDERATED 
OPTIMIZATION IN 
HETEROGENEOUS 
NETWORKS	

https://doi.
org/10.485
50/arXiv.18
12.06127	

FedProx is a 
generalization and re-
parametrization of 
FedAvg:	
 1. adds a proximal term 
scaled by µ to FedAvg 
objective, which limits the 
impact of local updates - 
minimizes the distance 
between local and global 
models	
 2. tolerates partial work 
from all selected devices 
– allows devices to train 
for less than specified 
number of local epochs	
 	
FedAvg is a special case 
of FedProx with µ = 0, 
SGD as the local 
optimizer, and no 
systems heterogeneity 
(equal number of epochs 
on each device).	

For each dataset, the learning rate is 
tuned on FedAvg, the same learning 
rate is then used for all experiments on 
that dataset.	
 	
Number of randomly selected devices 
per round is 10.	
 	
Various number of stranglers (devices 
that would be dropped in FedAvg due 
to incomplete local training in a 
federated round) 0%, 50%, 90%. 
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Inverse Distance 
Aggregation for 
Federated Learning 
with Non-IID Data	

https://doi.
org/10.485
50/arXiv.20
08.07665	

IDA = Inverse Distance 
Aggregation	
 	
- changes the weighting 
coefficients in FedAvg	
 	
- the proposed 
coefficients are based on 
the inverse distance of 
each client parameters to 
the average model of all 
clients.	
 	
- this allows to reject or 
weigh less the models 
who are poisoning, i.e. 
out-of-distribution.	
 	
INTRAC = INverse 
TRaining ACcuracy	
 	
- weighting scheme that 
uses clients training 
accuracy to penalize 
over-fitted models and 
encourage under-trained 
models in the aggregated 
model.	

90% of data for training, 10% for 
evaluation	
 	
- 5000 federated rounds, 1 local epoch 
on ech client	
 	
- report classification accuracy:	
 1. on local clients' test sets	
 2. on union of the tests sets of clients 

Siloed Federated 
Learning for Multi-
centric 
Histopathology 
Datasets	

	 SiloBN: Instead of 
treating all BN 
parameters equally as in 
FedAvg, we propose to 
take into account the 
separate roles of BN 
statistics (μ,σ2)(μ,σ2) 
and learned parameters 
(γ,β)(γ,β). SiloBN 
consists in only sharing 
the learned BN 
parameters across 
different centers, while 
BN statistics remain 
local. Parameters of non-
BN layers are shared in 
the standard fashion. 	

Data : 	
	 	 ○ H&E stained whole 
slide images (WSI) of lymph node 
sections drawn from breast cancer 
patients from 2 and 5 hospitals, 
respectively	
 	 	 ○ each dataset is 
partitioned into a training set (60%), a 
validation set (20%), and a test set 
(20%) using per-hospital stratification. 
Tiles from same slide (resp. tiles from 
same patient) are put into the same 
partition.	
 	 	 ○ compare the 
proposed SiloBN method to two 
standard Federated algorithms, 
FedAvg and FedProx, which treat BN 
statistics as standard parameters	
 	 	 	
	 	 	
	 Training info: 	
	 	 ○ two deep 
convolutional neural network (DCNN) 
architectures that only differ by the 
presence or absence of BN layers	
 	 	 ○ Each FL algorithm is 
run with E =1 or E = 10 local batch 
updates. Each training session is 
repeated 5 times (different random 
seeds for weight initialization and data 
ordering). Local optimization with 
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Adam	
 	 	 	
	 Evaluation:	
 intra-center generalization 
performance: AUCROC of the trained 
model’s predictions on each center’s 
held-out data for single-model methods 
(Pooled, FedAvg,or FedProx) and 
personalized models are tested on 
held-out data for their specific training 
domain (Local and SiloBN) 

Optimized Federated 
Learning on Class-
biased Distributed 
Data Sources	

preprint	 FL with aggregation 
server	
 	
FedBGVS = Federated 
Balanced Global 
Validation Score	
 	
- employing a balanced 
global validation dataset 
available on the server 
side	
 	
- aggregation algorithm is 
refined by using the 
Balanced Global 
Validation Score	

training set on clients - 20% used for 
local validation,	
 validation set - for global validation on 
the server,	
 hold-out test set - on the server	
 	
- 50 federrated rounds, 1 local epoch 
on each client per each round	
 	
- 4 clients 

FEDERATED 
LEARNING BASED 
ON DYNAMIC 
REGULARIZATION	

https://doi.o
rg/10.48550
/arXiv.2111.
04263	

FedDyn - a dynamic 
regularizer for each 
device and each 
federated round	
 	
- the regularizer 
dynamically modifies the 
device objective with a 
penalty term scaled by 
α so that, in the limit, 
when model parameters 
converge, they do so to 
stationary points of the 
global empirical loss.	
 	
- the penalty terms are 
linear or quadratic.	

- 100, 500, 1000 clients 
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Federated learning 
for predicting clinical 
outcomes in patients 
with COVID-19	

https://doi.
org/10.103
8/s41591-
021-01506-
3	

FL with aggregation 
server	
 	
x-rays preprocessed to 
2D images	

70%, 10%, and 20% of the cases were 
used for training, validation, and testing	
 	
- no cross-validation	
 - no hyperparameter tuning: same set 
of local training hyperparameters for all 
clients.	
 	
- cross-entropy with learning rate 
decay	
 - Adam optimizer	
 	
- normalization to zero-mean and unit 
variance	
 	
FedAvg:	
 - 20 clients	
 - unbalanced number of patients in 
clients	
 - 200 federated rounds, 1 local epoch 
per each round	
 	
evaluation:	
 - each client site selects its best local 
model by tracking the model’s 
performance on its local validation 
set	
 - server determines the best global 
model based on the average 
validation scores sent from	
 each client site to the server after 
each FL round 

Federated Learning 
of Electronic Health 
Records to Improve 
Mortality Prediction 
in Hospitalized 
Patients With COVID-
19: Machine Learning 
Approach	

10.2196/24
207	

FL with aggregation 
server	
 	
1. models trained by 
using only local data	
 	
2. pooled model - 
centralized data from all 
sites	
 	
3. federated model	

FedAvg:	
 - 5 clients	
 - all client models initialized with the 
same weights	
 - multiple federated rounds, 1 local 
epoch in each round 	
	
cross-validation:	
 - 490-fold bootstrapping	
 - 70:30 train and test data split	
 - AVG AUCROC across 490 folds 
reported	
 	
hyperparameter tuning:	
 - tuned on the central trained model, 
final hyperparameters used for FL 
model 

Federated Learning 
for Healthcare: 
Systematic Review 
and Architecture 
Proposal	

https://doi.
org/10.114
5/3501813	
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Federated learning 
for violence incident 
prediction in a 
simulated cross-
institutional 
psychiatric setting	

https://doi.
org/10.101
6/j.eswa.20
22.116720	

FL with aggregation 
server	
1. FL model	
2. data-centralized model 
(DC)	
3. local A model	
4. local B model	

5-fold cross-validation:	
 - local dataset split into train/val and 
test set	
 - grid search with 5-fold CV to find the 
best hyperparameters on trian/val data 
(for each HP combination 5 models 
trained, their predictions and labels are 
concatenated and used for 
performance assessment)	
 - F1 score used for fine-tuning	
 - final model trained on all 5 folds and 
tested on test set	
 	
- sigmoid, binary crossentropy	
 - class balancing using class weights	
 - early stopping on validation loss, 
max 120 epochs	
 	
FedAvg:	
 - 2 clients	
 - all client models initialized with the 
same weights	
 - 1 local epoch	
 - in each round val loss and perf. 
measures are tracked by:	
 1. sending the global model after 
averaging back to the clients,	
 2. making predictions on local val set,	
 3. sending the predictions and labels 
to server,	
 4. the server concats the predictions 
and labels and computes the loss and 
perf. measures 

Closing the 
Generalization Gap of 
Cross-silo Federated 
Medical Image 
Segmentation	

https://doi.
org/10.485
50/arXiv.22
03.10144	

FedSM = Federated 
Super model - consists of 
global model, 
personalised models and 
a model selector	
 	
global model - 
generalizes better on 
joint data	
 personalized models - 
generalize better on local 
data	
 model selector - 
combines the predictions 
from models above	
 	
SoftPull = personalized 
FL optimization 
formulation, to produce 
the personalized models	

50%, 25%, 25% - train, validation, test 
split	
 	
- no cross-validation	
 	
- 6 clients	
 - 150 federated rounds, 1 local epoch 
in each round	
 	
- Dice loss function, Adam optimizer 	
- tune the learning rate, how?	
 	
- performance metric Dice 
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Federated Learning in 
Medical Imaging: Part 
I: Toward Multicentral 
Health Care 
Ecosystems	

https://doi.
org/10.101
6/j.jacr.202
2.03.015	

-	 - 

Federated	algorithms	

Federated	stochastic	gradient	descent	(FedSGD)	
FedSGD	(2015)	is	the	direct	transposition	of	SGD	to	the	federated	setting	by	using	a	random	fraction	
of	clients	and	using	all	the	data	on	those	clients.	In	each	round,	just	one	batch	update	is	performed.	
The	gradients	are	averaged	by	the	server	proportionally	to	the	number	of	training	samples	on	each	
node	and	used	to	make	a	gradient	descent	step.	

This	requires	a	very	large	number	of	communication	rounds	of	training	to	produce	a	good	model.	

Variation	of	FedAvg,	where	B	=	all	local	data,	and	E	=	1.	

Federated	Averaging	Algorithm	(FedAvg)	
FedAvg	(2016)	 is	a	generalization	of	FedSGD,	where	rather	than	gradients	the	updated	weights	are	
exchanged.	The	rationale	behind	this	generalization	is	that	in	FedSGD,	if	all	local	nodes	start	from	the	
same	initialization,	averaging	the	gradients	is	strictly	equivalent	to	averaging	the	weights	themselves.	

Advantages	of	FedAvg	to	FedSGD:	

• FedAvg	converges	to	a	higher	level	of	test-set	accuracy	than	the	baseline	FedSGD	models.	
• FedAvg	lowers	communication	costs.	
• FedAvg	produced	a	regularization	benefit	similar	to	that	achieved	by	dropout.	

Non-IID	data	problem	

Zhao	et	al.	observed	that	if	the	data	is	IID,	then	the	learned	model	parameters	in	FedAvg	are	similar	to	
those	learned	using	centralized	SGD,	but	they	differ	for	non-IID	data.	And	highly	skewed	non-IID	data	
significantly	reduces	the	accuracy.	Possible	causes	for	the	weight	divergence	could	be:	

1. varying	initial	weights	on	each	client.		
2. the	earth	mover’s	distance	(EMD)	between	the	data	distributions	of	each	client	and	the	global	

distribution.	The	proposed	solution	is	sharing	a	fraction	of	data	globally,	reducing	the	earth	
mover’s	distance	(EMD)	and	in	turn	improving	the	achieved	accuracy.	Additionally,	the	server	
can	pre-train	the	model	on	the	globally	shared	data	that	jumpstarts	the	learning	process	on	
the	client	side.	With	those	measures	in	place,	the	paper	reports	an	improvement	of	≈	30%	for	
CIFAR-10	in	the	1-class	non-IID	case.	However,	this	rarely	is	possible	for	medical	use-cases.	

Moreover,	they	experimented	with	highly	skew	data:		

1. 1-class non-IID: each client receives data partition from only a single class  
2. 2-class non-IID: each client receives data partition from 2 classes 

McMahan	et	al.	have	demonstrated	in	the	original	FL	paper	that	FedAvg	can	work	with	certain	non-
IID	data.	
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Optimizations	and	modifications	of	FedAvg	
FedProx,	2020	[40]	

o Addresses:	
• System	heterogeneity	(differences	in	system	environment	on	devices,	devices	are	dropped	

in	 FedAvg	when	 they	 fail	 to	 complete	 a	 certain	 amount	 of	 training,	 e.g.	 due	 to	 a	weak	
computational	power	or	communication	capabilities)	

• Statistical	heterogeneity	
o Both	 heterogeneities	 have	 negative	 effects	 on	 convergence.	 Larger	 heterogeneity	 results	 in	

worse	convergence.	
o Adds	a	proximal	term	scaled	by	µ	to	FedAvg	objective,	which	limits	the	impact	of	local	updates.	
o Tolerates	partial	work	from	all	selected	devices	–	allows	devices	to	train	for	less	than	specified	

number	of	local	epochs.	
o With	IID-data	FedAvg	outperforms	FedProx.	
o With	non-IID	data	FedAvg	starts	to	diverge,	increasing	heterogeneity	leads	to	worse	

convergence.	Using	FedProx	with	μ	>	0	improves	the	convergence.	
o μ	needs	to	be	tuned.	
o implementation:	https://github.com/litian96/FedProx	

IDA,	2020	[41]	

o Addresses:	
• Statistical	heterogeneity,	unbalanced	data	and	skewed	data	in	terms	of	labels	

o IDA	changes	the	weighting	in	FedAvg	based	on	the	inverse	distance	of	each	client's	
parameters	to	the	average	parameters.	This	allows	to	reject	or	weigh	less	models	that	are	
poisoning,	i.e.	out-of-distribution.	

o Also	propose	INTRAC	–	weighting	scheme	that	uses	clients	training	accuracy	to	penalize	over-
fitted	models	and	encourage	under-trained	models	in	the	aggregated	model.	

o IDA	has	on-par	or	slightly	better	performance	than	FedAvg	both	with	IID	and	non-IID	data.	
o IDA	is	more	robust	than	FedAvg	in	high	non-IID	data.	
o On	clinical	dataset	HAM10k	global	accuracy	of	IDA	is	on	par	with	FedAvg,	but	local	accuracy	of	

IDA	(clients	on	their	own	test	set)	is	superior	to	FedAvg.	

FedBGVS,	2021	[42]	

o Addresses:	
• Statistical	heterogeneity	

o Requires	a	balanced	global	validation	dataset	available	on	server	side.	
o FedAvg	is	refined	using	the	global	dataset	and	Balanced	Global	Validation	Score	(BGVS).	
o Report	that	FedBVGS	outperforms	FedAvg,	IDA	and	FedProx	in	general.	

FedDyn,	2020	[43]	

o Addresses:	
• Communication	costs	

o Adds	a	dynamic	regularizer	for	each	device	and	each	federated	round.	
o The	regularizer	dynamically	modifies	the	device	objective	with	a	penalty	term	scaled	by	α	so	

that,	in	the	limit,	when	model	parameters	converge,	they	do	so	to	stationary	points	of	the	global	
empirical	loss.	

o Compare	proposed	FedDyn	to	FedAvg,	FedProx,	SCAFFOLD.	
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o FedDyn	always	achieves	the	target	accuracy	with	fewer	rounds	than	all	competing	algorithms.			
o significantly	 faster	 convergence	 than	 all	 compared	 algorithms	 in	 both	 IID	 and	 non-IID	 data	

distribution.		
o α	needs	to	be	tuned.	
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